Serum Interleukin 18 as a Diagnostic Remission Criterion in Systemic Juvenile Idiopathic Arthritis

To the Editor:

With the development of new therapeutic agents and combination treatment strategies, more children with systemic juvenile idiopathic arthritis (sJIA) can experience protracted periods of low disease activity levels and, in some cases, complete disease quiescence. These advances create a need for the development of validated criteria that precisely describe the clinical state of disease quiescence.

We previously reported that serum interleukin 18 (IL-18) levels in patients with sJIA were extremely high during the active phase and remained significantly elevated even when other markers of disease activity normalized. We also reported that serum IL-18 levels at birth in a healthy infant born to a woman with active adult-onset Still’s disease were markedly increased, and this increase persisted for about 1 month. These findings indicate that it takes several months for extremely elevated serum IL-18 levels to normalize under physiological conditions.

In our study, we serially measured serum IL-18 levels in 11 patients with sJIA (age 10.2 ± 7.6 yrs, male:female = 3:8) until they had relapsed or achieved remission to investigate the kinetics of serum IL-18 levels from the active phase to remission. Further, we investigated the correlation between serum IL-18 and IL-6 levels in these patients. Among 11 patients, 4 patients were enrolled in our previous study, while 7 patients were enrolled in our other study. The criteria defining the active phase of sJIA were active arthritis, fever, rash, hepatosplenomegaly, generalized lymphadenopathy, and serositis, as well as increased erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels. The criteria for remission while taking medication were: remission while receiving medication, a minimum of 6 continuous months of inactive disease while receiving medication, clinical remission while not receiving medication, or 12 months of inactive disease while not receiving any medication.

Serum IL-18 and IL-6 levels were determined using a commercial ELISA as we previously reported. The limit of detection of IL-18 and IL-6 in our assay were < 12.5 pg/ml and < 3.0 pg/ml. In our assay, serum IL-18 and IL-6 levels of 28 healthy controls (age 8.8 ± 7.3 yrs) were 140.5 (76-255) pg/ml and < 3.0 pg/ml, respectively. The protocol of our study was approved by the Institutional Review Board of Kanazawa University, and all the patients provided informed consent. All patients were treated with high-dose steroid, including methylprednisolone pulse therapy (30 mg/kg/day, 3 days). In addition to steroid, 6 patients were treated with cyclosporine and 2 patients were treated with tocilizumab (TCZ; 8 mg/kg, every 2 weeks). Follow-up periods were at least over 15 months (15 mos–7 yrs). As we previously reported, serum IL-6 levels in patients receiving TCZ therapy are higher compared to those in patients not receiving TCZ therapy because IL-6 receptor-mediated consumption of IL-6 is inhibited by the unavailability of TCZ-free IL-6 receptor. Therefore, the correlation between serum IL-18 and IL-6 levels was determined in 9 patients not receiving TCZ therapy.

Of the 11 patients, 5 had no relapse (group A); 3/5 patients achieved remission while not taking medication. Remission while not taking medication was maintained for over 3 years. Two patients achieved remission while taking medication. The other 6 patients experienced relapse during withdrawal of steroid within 12 months after disease onset (group B). Of the 6 patients, 4 experienced relapse during the inactive phase and the other 2 patients experienced relapse during remission while taking medication. As shown in Figure 1A, the longitudinal examination of group A patients showed that serum IL-18 levels decreased to the levels < 1000 pg/ml in inactive phase and normalized in remission phase. In contrast, longitudinal examination of group B patients clearly demonstrated a sustained elevation of serum IL-18 levels (> 1000 pg/ml) during the inactive phase (Figure 1B).

REFERENCES


4. Wallace CA, Ruperto N, Giannini E. Childhood Arthritis and Rheumatology Research Alliance; Pediatric Rheumatology

MASAKI SHIMIZU, MD, PHD, Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, YASUO NAKAGISHI, MD, Department of Pediatric Rheumatology, Hyogo Prefectural Kobe Children’s Hospital, Hyogo; AKIRA YOSHIDA, MD, PHD, Department of Pediatrics, Japanese Red Cross Wakayama Medical Center, Wakayama; AKIHIRO YACHIE, MD, PHD, Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.

Address correspondence to Dr. M. Shimizu, Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan. E-mail: shimizum@staff.kanazawa-u.ac.jp

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2014. All rights reserved.

The Journal of Rheumatology 2014; 41:11

Downloaded on June 4, 2022 from www.jrheum.org
Figure 1. Longitudinal examination of serum interleukin 18 (IL-18) levels in patients with systemic juvenile idiopathic arthritis. A. Group A: patients with remission. B. Group B: patients with relapse. Orange arrows show the timing of the relapses in each patient. C. Correlation between serum IL-18 and IL-6 levels. Serum IL-6 levels are within normal limits whereas IL-18 levels remain elevated.


Wallace CA, Giannini EH, Huang B, Itert L, Ruperto N; Childhood Arthritis Rheumatology Research Alliance; Pediatric Rheumatology Collaborative Study Group; Paediatric Rheumatology International Trials Organisation. American College
of Rheumatology provisional criteria for defining clinical inactive
disease in select categories of juvenile idiopathic arthritis. Arthritis
S, et al. Tocilizumab masks the clinical symptoms of systemic
juvenile idiopathic arthritis-associated macrophage activation
syndrome: the diagnostic significance of interleukin-18 and
Mechanisms and pathologic significances in increase in serum
interleukin-6 (IL-6) and soluble IL-6 receptor after administration
of an anti-IL-6 receptor antibody, tocilizumab, in patients with
112:3959-64.

J Rheumatol 2014;41:11; doi:10.3899/jrheum.140025