Arsenic trioxide (As$_2$O$_3$), a component of traditional Chinese medicine, is successfully used in the management of acute promyelocytic leukemia (APL). It is an effective therapeutic agent even in patients resistant to retinoic acid and chemotherapy. Various cell types have been reported to be sensitive to As$_2$O$_3$-induced apoptosis. As$_2$O$_3$ has been reported to be cytotoxic to APL cells and other malignant cells, including myeloma cells, chronic lymphocytic leukemia cells, and a variety of solid tumor cells1,2,3,4. Intravenous administration of As$_2$O$_3$ to patients with APL leads to a peak plasma level of 5 to 7 µM, with a steady-state concentration of 1 to 2 µM5. The 2 main mechanisms involved in the therapeutic effects of As$_2$O$_3$ are differentiation and apoptosis. In malignant cells, As$_2$O$_3$ induces cell differentiation at low concentrations (≤ 1 µM) and promotes apoptosis at high drug levels (≥ 2 µM)6,7. Recently, As$_2$O$_3$ was found to protect animals from developing human lupus-like syndrome. MRL/lpr mice have been widely used to investigate the etiology and treatment of systemic lupus erythematosus. A study involving an MRL/lpr mouse demonstrated that As$_2$O$_3$ treatment significantly prolonged survival. As$_2$O$_3$ is therefore considered a novel potential agent for autoimmune diseases8.

Rheumatoid arthritis (RA) is a common human autoimmune disease characterized by chronic inflammation and hyperplasia of the synovial joints and subsequent progressive destruction of articular structures9. Although various cell populations may participate in the pathogenesis of RA, fibroblast-like synoviocytes (FLS) are considered crucial in both the initiation and progression of arthritis10. Mechanisms of synovial hyperplasia are not fully understood. Recent evidence supports the hypothesis that resistance to apoptosis contributes to the expansion of RA FLS. Apoptosis induction of RA FLS is therefore suggested as a potential therapeutic approach for RA11,12.
We investigated whether As$_2$O$_3$ had a therapeutic effect on RA. Considering the critical role of FLS in the development of RA, we investigated the possible effect of As$_2$O$_3$ on human RA FLS as well as an experimental model of collagen-induced arthritis (CIA) in rats and further explored the molecular mechanisms involved in As$_2$O$_3$ treatment.

MATERIALS AND METHODS

Cell culture and reagents. RA FLS derived from inflamed synovial tissues of patients with RA were obtained from Cell Applications (San Diego, CA, USA). Cells were incubated in synoviocyte growth medium (Cell Applications) at 37°C in 5% CO$_2$. FLS passages 3 to 7 were used for all experiments.

Tumor necrosis factor-α (TNF-α), bovine type II collagen, and Freund’s incomplete adjuvant all came from Sigma-Aldrich (St. Louis, MO, USA). As$_2$O$_3$ was purchased from Yida pharmaceutical factory (Harbin, Hei Longjiang, China). A stock solution of 1 mM As$_2$O$_3$ was obtained by dissolving the drug in phosphate-buffered saline (PBS) and storing at 4°C in the dark. The solution was diluted to working concentrations before use.

Apoptosis analysis. Apoptosis was detected by flow cytometry, terminal deoxynucleotide transferase-mediated dUTP nick end-labeling (TUNEL) assay staining, and transmission electron microscopy (TEM).

For the flow cytometric analysis, RA FLS were treated with As$_2$O$_3$ for 24 h and then harvested and washed twice in PBS. Cells (1 × 105) were resuspended in 100 µl annexin V binding buffer, followed by double-staining with FITC-annexin V and propidium iodide using a FITC Annexin V Apoptosis Detection Kit (BD Biosciences, San Jose, CA, USA). Samples were analyzed by flow cytometry (BD Biosciences).

TUNEL assay was carried out following the manufacturer’s instructions (Roche Diagnostics, Mannheim, Germany). Air-dried cell samples were fixed with freshly prepared fixation solution (4% paraformaldehyde in PBS, pH 7.4) for 1 h at room temperature. Slides were then washed in PBS, and permeabilized with Triton X-100 (0.1% Triton X-100 in 0.1% sodium citrate) for 2 min at 4°C. Next, samples were rinsed with PBS and incubated with TUNEL reaction mixture in a humidified chamber at 37°C for 60 min. After washing 3 times with PBS, samples were analyzed under a fluorescence microscope (Eclipse E800, Nikon, Tokyo, Japan). The apoptosis index was defined as the percentage of positive cells in 1000 RA FLS.

Apoptosis of RA FLS was also determined under TEM directly through observations of morphological changes at the subcellular level. Cells were cultured in the presence or absence of As$_2$O$_3$. After 72 h incubation, RA FLS were harvested and washed twice in PBS, followed by centrifugation, and fixed with 2.5% cold glutaraldehyde. Fixed samples were dehydrated with a graded series of ethanol and embedded. Ultrathin sections were subsequently stained with uranyl acetate and lead citrate. Ultrastructural features of cells were examined under a TEM (JEM-1200, JEOL, Tokyo, Japan).

DNA-binding activity of NF-κBp65. Specific binding of NF-κBp65 was measured using a TransAM NF-κBp65 kit (Active Motif, Carlsbad, CA, USA) according to the manufacturer’s instructions. After treatment with As$_2$O$_3$ and/or TNF-α, cells were collected by scraping and centrifugation. Cell nuclear extracts were then added into a 96-well plate immobilized with oligonucleotide containing the NF-κB consensus site (5’-GGG ACT TCT TTC C-3’). Using a primary antibody directed against the NF-κBp65 subunit with a secondary antibody conjugated to horseradish peroxidase, the optical density was qualified by spectrophotometry using the SpectraMax M5 (Molecular Devices, Sunnyvale, CA, USA).

Real-time polymerase chain reaction (PCR). Total RNA was extracted using an RNasy Minikit (Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol. Reverse transcription was carried out with AMV reverse transcriptase (Promega, Madison, WI, USA). Real-time quantitative PCR was performed with the Premix Ex Taq PCR kit (Takara, Dalian, China) and conducted with an iCycler iQ real-time detection system (Bio-Rad, Hercules, CA, USA). Sequences for the NF-κB gene-specific primers were as follows: 5’-AGA AGT CAC ATC TGG TTT GAT TTC T-3’ (forward), 5’-CCA GCC CTC AGC AAA TCC TCC-3’ (reverse), and FAM-TAGA TCT GTA CCA GAC GCC CTT GCA C-BHQ1 (probe). PCR was performed with the following cycling measurements: 95°C for 5 min followed by 40 cycles, each comprising 95°C for 10 s and 60°C for 30 s. A total of 20 µl PCR mixture contained 10 µl 2× Premix Ex Taq, 1 µl (0.2 µM, final concentration) of each primer, 2 µl of cDNA sample, 0.5 µl TaqMan probe, and 5.5 µl ddH$_2$O. The housekeeping gene GAPDH was used for internal normalization. Fold-changes of gene induction were calculated relative to untreated sample.

Caspase activity assays. Activities of caspase-3 and caspase-8 were measured using caspase-Glo 3/7 assay kit and caspase-Glo 8 assay kit (Promega), respectively. RA FLS were seeded into a white 96-well plate (Greiner Bio-One GmbH, Frickenhausen, Germany) at a density of 5000 cells/well in triplicate wells. Cells were cultured in the presence or absence of As$_2$O$_3$ for 12 h and subsequently mixed with an equal volume of caspase substrates. Luminescence was measured after 30 min incubation using a plate reader (SpectraMax M5, Molecular Devices).

CIA model in rats. Twelve-week-old male dark agouti (DA) rats were used in our experiments. Animals were obtained from the China Academy of Chinese Medical Sciences. All animal experiments were performed according to the National Institutes of Health Guide for the Care and Use of Laboratory Animals, and protocols were approved by the Institutional Animal Care and Use Committee of Harbin Medical University. Rats were weaned and housed in an animal facility with 12-hour light cycles.

Bovine type II collagen (BII) was dissolved in 0.1 M acetic acid, and the collagen solution was emulsified in an equal volume of incomplete Freund’s adjuvant. CIA was induced in rats by intradermal injections at the tail base with 2 mg/kg BII. A booster injection of 100 µg BII was administered on the seventh day. Twenty-one days after collagen injection, CIA was well established in the immunized rats. Animals were randomly divided into the following 6 groups: normal control, CIA control, and As$_2$O$_3$-treated CIA groups (1.0 mg/kg, 2.0 mg/kg, 4.0 mg/kg, and 6.0 mg/kg), each group comprised 12 DA rats. Twenty-two days after the first immunization, CIA rats received a treatment of As$_2$O$_3$ for 7 days. The drug was injected intraperitoneally with specified doses daily. Control groups received a daily intraperitoneal injection of an equal volume of saline.

Histological sections of the tail base were dissected and fixed immediately in 10% formalin, embedded in paraffin and subsequently stained with H&E. Samples were then observed under a light microscope. Sections were examined for the presence of hyperplasia of the synovium, pannus formation, and destruction of the joint.

Statistical analysis. Results are expressed as means ± SD. Statistical analysis was performed with paired t test or ANOVA as appropriate. A value of p < 0.05 was considered statistically significant.

RESULTS

As$_2$O$_3$-induced RA FLS apoptosis. After RA FLS were cultured in the presence or absence of As$_2$O$_3$, apoptosis was first detected using flow cytometry. On the basis of annexin V and propidium iodide binding, we found that As$_2$O$_3$ treatment induced an apoptotic process in RA FLS. A lower percentage of binding (1.6% ± 0.3%) was detected in the untreated cells group. Enhanced apoptotic rate of RA FLS was found with the treatment of 2 µM As$_2$O$_3$, and even higher when 8 µM As$_2$O$_3$ was applied (10.6% ± 2.1%). Thus, As$_2$O$_3$ induced RA FLS apoptosis in a dose-dependent manner (Figure 1A).

As$_2$O$_3$-associated apoptotic effects were further con-

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2011. All rights reserved.
Arsenic trioxide (As$_2$O$_3$) shows apoptotic effect on RA FLS. A. Apoptotic rate was evaluated by flow cytometry. Cells were incubated with indicated concentrations of As$_2$O$_3$ for 24 h, followed by double-staining with FITC-annexin V and propidium iodide. Apoptotic percentage of RA FLS increased in accord with concentration of As$_2$O$_3$. *Significant differences compared with control untreated cells. B. Apoptosis was examined by TUNEL assay (400×). Light areas are apoptotic cells. Only a few positive cells were detected in the control group, and apoptotic cells were easily observed in As$_2$O$_3$-treated groups. C. Ultrastructural changes of RA FLS examined under transmission electron microscopy (8000×). Early apoptosis was observed following treatment with 2 µM arsenic agent. Cells incubated with 8 µM As$_2$O$_3$ revealed typical manifestations of apoptosis.

Ultrastructural changes of cells were observed under TEM. Untreated RA FLS displayed normal shape with developed rough endoplasmic reticulum. Cells treated with 2 µM As$_2$O$_3$ did not display altered morphology. However, early characteristics of apoptosis were observed, including chromatin condensation and marginalization. After a treatment with 8 µM As$_2$O$_3$, irregular contour of cells was noted and other typical characteristics of apoptosis appeared including vacuolar formation, mitochondrial swelling, pyknosis and condensation, and fragmentation of nuclear chromatin (Figure 1C). These observations further demonstrated As$_2$O$_3$-induced apoptosis of RA FLS.

Effects of As$_2$O$_3$ on NF-κB messenger RNA (mRNA) expression and DNA-binding activity. We then studied the possible mechanisms involved in the apoptotic effect of As$_2$O$_3$. Inhibition of NF-κB was shown to play an important role in As$_2$O$_3$-induced tumor cell apoptosis. We assessed NF-κB mRNA expression and DNA-binding activity of the p65 subunit in cultured RA FLS. The mRNA level of NF-κB was predominantly upregulated with TNF-α stimulation. This action was efficiently suppressed through the addition of As$_2$O$_3$. As$_2$O$_3$ treatment downregulated NF-κB mRNA expression in a dose-dependent manner (Figure 2A). Indeed, the mRNA level was diminished to control level when treated with 8 µM As$_2$O$_3$.

DNA-binding activity of the NF-κBp65 subunit was evaluated using a sensitive multiwell colorimetric assay. Cells were pretreated with 4 µM As$_2$O$_3$ for 6 h, followed by a 2-h incubation with TNF-α (20 ng/ml). Pretreatment with TNF-α resulted in 2.5-fold-enhanced DNA-binding capacity of the p65 subunit. Cells treated with As$_2$O$_3$ itself showed weaker NF-κBp65 activity and no statistical significance was detected. With TNF-α stimulation, NF-κB activation in RA FLS was markedly decreased (Figure 2B). These observations indicate that the NF-κB pathway plays an essential role in the As$_2$O$_3$-induced apoptotic process.

As$_2$O$_3$-induced RA FLS apoptosis involves activation of caspases. It has been reported that NF-κB protects cells from apoptosis by restraining the upstream caspase cascade. Moreover, As$_2$O$_3$-induced apoptosis could be effectively blocked by the inhibitors of caspase-8 and caspase-3. To further clarify the apoptotic signaling pathway underlying As$_2$O$_3$ toxicity, we investigated the effect of As$_2$O$_3$ on the activation of the caspase cascade in RA FLS. Caspase-8 and caspase-3 activities were examined using the luminescent caspase activity assay with luminogenic substrates. Enzymatic activities of caspase-8 and caspase-3 were measured by detecting the luminescent signals of the caspases and results were expressed as relative light units compared with vehicle control.
with the untreated group. Our data demonstrate that As$_2$O$_3$ treatment significantly increased the activities of caspase-8 and caspase-3 (2.2-fold and 1.9-fold, respectively; Figure 3). These results indicate that caspase activation plays a potent role in the process of As$_2$O$_3$-induced RA FLS apoptosis.

Effect of As$_2$O$_3$ on CIA rats. CIA rats displayed limited activity compared with normal rats during the experiment. Joint swelling subsided in As$_2$O$_3$-treated rats, and they exhibited no behavioral abnormalities compared with normal controls. Absolute increments in body weight were measured on the first, seventh, and fifteenth days after As$_2$O$_3$ treatment, and no significant differences were observed between groups.

With H&E staining and morphology detection of the animal joints, no synovial hyperplasia or pannus formation was observed in the control rats. Arthritis developed in the CIA model, characterized by synovial hyperplasia, pannus formation, erosion of bone and cartilage, inflammatory cell infiltration, and arthrodial cartilage degradation (Figure 4). Animals treated with As$_2$O$_3$ revealed less evidence of inflammation or destruction in the joint, and this particularly applied to CIA rats treated with 4.0 mg/kg and 6.0 mg/kg As$_2$O$_3$. Indeed, histology of the synovial membrane in these groups was similar to normal synovium, and synovial hyperplasia and inflammation were effectively suppressed by As$_2$O$_3$.

DISCUSSION

Proliferation of RA synovial cells is considered to be as fierce as that of tumor cells. The hypertrophied synovium invades and erodes the cartilage and adjacent bone, resulting in progressive destruction of the joint. Although the pathogenesis of RA is only partially understood, it has been demonstrated that FLS are important in arthritis and are involved in the initiation and perpetuation of RA. RA FLS are therefore considered important targets for novel approaches in the management of RA. Synovial hyperplasia appeared to be mediated at least in part by defective apoptosis of RA FLS. Previous studies suggested that induction of apoptosis is a promising therapeutic strategy to eliminate RA synovial pannus. In our study, apoptosis of RA FLS was proved by both direct and indirect observations. Our results indicate that As$_2$O$_3$ can effectively induce the programmed cell death in RA FLS in a dose-dependent manner.

NF-κB is widely expressed in almost all animal cell types. This ubiquitous transcription factor is involved in the activation of a multitude of cellular and viral genes and plays a pivotal role in cell death and survival pathways. NF-κB is known to be activated in RA. Activation of NF-κB by inflammation protects synovial cells from apoptosis. Data from studies using experimental animals and human joints have shown obvious increases in the DNA-binding activity of NF-κB in both the CIA model and patients with RA. Prior studies suggested that inhibition of NF-κB activity essentially contributes to the cytotoxic action of arsenic. Cells transfected with NF-κBp65 expression structures are resistant to arsenic-mediated induction of apoptosis. We therefore hypothesize that NF-κB plays a role in RA FLS apoptosis induced by As$_2$O$_3$. Our data demonstrate for the first time that As$_2$O$_3$ has the ability to block TNF-α-induced activation of NF-κB in RA FLS. DNA-binding activity and the mRNA level were both effectively suppressed during As$_2$O$_3$ incubation. A variety of drugs (e.g., sulfasalazine, gold compounds, and corticosteroids) have been reported to exhibit their therapeutic properties, at least in part, through the NF-κB pathway. Besides classical agents, gene therapy and novel agents containing small-molecule inhibitors of NF-κB have exhibited efficacy in animal arthritis models. Thus, blockade of
the NF-κB signaling pathway has a precise therapeutic effect on RA. In addition, activation of NF-κB enabled the activation of multiple inflammatory molecules. TNF-α, interleukin 1β, matrix metalloprotease, and various proinflammatory factors are considered to be under the control of NF-κB transcription factors15. As\textsubscript{2}O\textsubscript{3} may consequently exhibit antiinflammatory effects, which are of great benefit in the control of the disease. In short, the definite inhibitory action against the NF-κB pathway makes it possible to use As\textsubscript{2}O\textsubscript{3} as a novel agent for RA. It is also important to note that the drug concentrations we used correlate closely with clinical concentrations and can closely mimic the \textit{in vivo} status.

Previous studies have demonstrated that specific inhibition of NF-κB activity potentiates TNF-α and FasL-related apoptosis26. Caspase-8 is known to be the apical caspase that participates in the TNF-α and FasL pathway. Studies on the HT1080 fibrosarcoma cell line validated that NF-κB suppressed the initiation of the caspase cascade through caspase-8 blockade. In our study, As\textsubscript{2}O\textsubscript{3} treatment effectively enhanced the activity of caspase-8, suggesting that NF-κB inhibition by As\textsubscript{2}O\textsubscript{3} led to the activation of the upstream

Figure 4. Effect of arsenic trioxide (As\textsubscript{2}O\textsubscript{3}) treatment on collagen-induced arthritis (CIA) rats. Morphological changes in joints of the 6 groups were evaluated under a light microscope (H&E stain). A. Smooth articular facets were seen in the control group. B. Arrows indicate excessive proliferation of synovium and angiogenesis in the positive control (CIA). These observations diminished gradually with increase of As\textsubscript{2}O\textsubscript{3} concentration (C, 1 mg/kg; D, 2 mg/kg; E, 4 mg/kg; F, 6 mg/kg).
As2O3-induced apoptosis of RA FLS. These findings show As2O3 to be a novel and economic therapeutic agent for RA treatment. Further studies are required to evaluate the feasibility and effect of As2O3 through intraarticular administration.

Notable progress has been made in the treatment of RA, especially for the application of biological agents that specifically suppress the actions of TNF-α or interleukin 1. However, not all patients with RA benefit from those drugs. A certain number of patients exhibit poor responses to the biologics, indicating that new strategies should be applied to the management of RA. High cost is another major obstacle. The direct interactions of As2O3 with RA FLS, it will be of great interest to investigate the feasibility and effect of As2O3 through intraarticular administration.

A recent case report27 recorded a relapse of RA in a patient with APL who received combination therapy with all-transretinoic acid and As2O3. This seems to conflict with our findings. However, the patient in that report received both all-transretinoic acid and As2O3 treatment, while our patient received a treatment with only As2O3. In addition, a modified method, known as continuously slow As2O3 intravenous infusion, was used in our patient, in accordance with a prior study.28 This delivery method kept the drug in stable concentrations in blood circulation and effectively decreased the side effects. Thus, the rational method for the use of As2O3 should be noted.

Our study demonstrates that As2O3 can restrain the proliferation of RA FLS and consequently alter the histomorphological changes in RA synovium. The NF-κB signaling pathway and caspase activation participate in As2O3-induced apoptosis of RA FLS. These findings show As2O3 to be a novel and economic therapeutic agent for RA treatment. Further studies are required to evaluate the possible toxicity of As2O3.

REFERENCES

