Azathioprine: Association with Therapy-related Myelodysplastic Syndrome and Acute Myeloid Leukemia

YOK-LAM KWONG

ABSTRACT. Objective. Azathioprine is widely used in patients with autoimmune diseases and after organ allografting. A recognized carcinogen, azathioprine is also associated with the development of therapy-related myelodysplastic syndrome and acute myeloid leukemia (t-MDS/AML).

Methods. In 56 reported cases, azathioprine had been administered for a median of 65 months (range 6–192) to a median cumulative dose of 146 g (range 19–750) before t-MDS/AML developed.

Results. In 11 patients, repeated episodes of cytopenias developed during azathioprine therapy, antedating the development of t-MDS/AML. In 33 cases with successful karyotypic analysis, 26 cases (79%) showed monosomy 7, deletion of the long arm of chromosomes 7 and 5, and rearrangement of chromosome 11q23. These changes were cytogenetic hallmarks of MDS/AML secondary to known leukemogenic agents and radiotherapy.

Conclusion. The observations implicate azathioprine as a leukemogenic agent. It will be prudent to review the need for azathioprine therapy when unexpected cytopenias occur and prescription has been prolonged. (First Release Jan 15 2010; J Rheumatol 2010;37:485–90; doi:10.3899/ jrheum.090834)

Key Indexing Terms: AZATHIOPRINE ACUTE MYELOID LEUKEMIA

Azathioprine is a thiopurine popularized in the 1960s as an immunosuppressive drug in renal allografting¹. The efficacy of azathioprine as an immunosuppressant soon led to its application in rheumatologic diseases². This was followed by an expansion of its indications to autoimmune blood diseases³, inflammatory bowel disorders^{4,5}, and multiple sclerosis⁶. More than 4 decades since its initial use, azathioprine continues to be part of the treatment algorithms of these disorders.

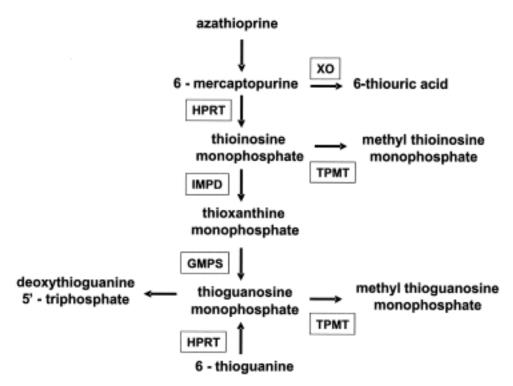
Pharmacology and metabolism of azathioprine. Azathioprine, 6-mercaptopurine (6-MP), and 6-thioguanine (6-TG) constitute the thiopurine group of antimetabolites (Figure 1)⁷. Azathioprine is converted by glutathione to 6-MP⁸. 6-MP is converted by hypoxanthine phosphoribosyltransferase to thioinosine monophosphate (TIMP). TIMP is subsequently converted to thioguanosine monophosphate, which is then converted by deoxynucleotide kinases and

From the Department of Medicine, Queen Mary Hospital, Hong Kong, China.

Y.L. Kwong, MD, FRCPath, Department of Medicine, Queen Mary Hospital.

Address correspondence to Dr. Y.L. Kwong, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, China. E-mail: ylkwong@hkucc.hku.hk Accepted for publication October 2, 2009.

MYELODYSPLASTIC SYNDROME CYTOGENETICS


reductase to deoxythioguanine 5' triphosphate, a substrate for DNA polymerase in DNA synthesis. Azathioprine is catabolized by 2 enzymes: xanthine oxidase, which converts 6-MP to 6-thiouric acid, and thiopurine methyltransferase (TPMT), which converts TIMP to methyl-TIMP.

The biologic effects of azathioprine may be affected by its catabolism. Allopurinol inhibits xanthine oxidase, and its administration increases the effective azathioprine dosage 4-fold. Polymorphic variants of the *TPMT* gene encode proteins with reduced activities. Heterozygotes for these variants require lower doses of azathioprine. Homozygotes may develop serious to fatal marrow toxicity after azathioprine administration⁷.

Toxicity of azathioprine. In addition to problems associated with immunosuppression, azathioprine has other adverse effects. Azathioprine-induced pancreatitis is well known⁹. The use of azathioprine in inflammatory bowel diseases may be associated with hepatotoxicity^{10,11}.

The carcinogenic potential of azathioprine is not as well known. The International Agency for Research on Cancer classified azathioprine as a human carcinogen¹². Malignancies attributed to azathioprine therapy are in general rare tumors¹³, and during oncogenesis other co-carcinogenic factors, such as graft-vs-host disease after allogeneic hematopoietic stem cell transplantation, may be involved¹⁴. However, recent data have shown an association between

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2010. All rights reserved.

Figure 1. Metabolism of azathioprine and the other thiopurines. HPRT: hypoxanthine phosphoribosyltransferase; XO: xanthine oxidase; TPMT: thiopurine methyltransferase; IMPD: inosine monophosphate dehydrogenase; GMPS: guanine monophosphate synthetase.

azathioprine treatment and therapy-related myelodysplastic syndrome and acute myeloid leukemia (t-MDS/AML), a complication unknown to most prescribing physicians.

The development of t-MDS/AML when azathioprine is used to treat nonmalignant diseases is catastrophic. Therefore, the association between azathioprine and t-MDS/AML must be critically appraised, in order to define risk factors that may predispose patients to this fatal complication.

MATERIALS AND METHODS

English publications indexed in Medline were searched using the key words azathioprine, secondary, therapy-related, myelodysplasia, myelodysplastic syndrome, and acute myeloid leukemia. Articles with complete patient demographics, diagnosis, and treatment outcome were reviewed. References in these publications were also scrutinized to ensure that all relevant articles were included.

RESULTS

Patients. A total of 56 patients were identified¹⁵⁻⁴². Their characteristics are described in Table 1. Details for each patient are given in the Appendix. The underlying indications for azathioprine treatment were autoimmune diseases in half of the cases, and solid-organ allografting in the other half. Men and women were equally affected.

Azathioprine treatment. In organ allograft recipients, azathioprine was part of the triple therapy that included *Table 1.* Characteristics of 56 patients with therapy-related myelodysplastic syndrome/acute myeloid leukemia, after azathioprine treatment.

Clinicopathologic Characteristics	No. (% of total)		
Sex			
Men	28 (50)		
Women	27 (48)		
Not available	1		
Median age (range), yrs	45 (19-74)		
Indications for azathioprine			
Autoimmune diseases	27 (48)		
Systemic lupus erythematosus	6		
Rheumatoid arthritis	6		
Multiple sclerosis	3		
Primary chronic polyarthritis	3		
Polymyositis	2		
Wegener's granulomatosus	2		
Crohn's disease	1		
Psoriatic arthropathy	1		
Dermatomyositis	1		
Autoimmune hepatitis	1		
Hypereosinophilia, vasculitis	1		
Type of organ allograft	29 (52)		
Kidney transplant	19		
Heart transplant	7		
Lung transplant	2		
Liver transplant	1		
Azathioprine treatment			
Median duration (range), mo	65 (6-192)		
Median cumulative dose (range), g	146 (19-756)		

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2010. All rights reserved.

The Journal of Rheumatology 2010; 37:3; doi:10.3899/jrheum.090834

cyclosporine and prednisolone. For the remaining patients, azathioprine was the only relevant medication in 25% (10/41) of cases. Five patients had received other medications, including cyclophosphamide (n = 4), gold (n = 2), penicillamine (n = 1), and levamisole (n = 1). Of all the medications accompanying azathioprine therapy, only cyclophosphamide is known to be potentially leuke-mogenic. The median duration of azathioprine therapy was 65 months (range 6–192), at a median cumulative dose of 146 g (range 19–750).

Hematologic toxicity of azathioprine. Of 27 cases where information on hematologic toxicity during azathioprine therapy was available, 11 patients developed cytopenias before the development of t-MDS/AML (Table 2). The presentation included anemia, leukopenia, thrombocytopenia, or their combinations. The cytopenias necessitated a reduction of dose or temporary cessation of azathioprine. However, in all cases azathioprine was readministered after the cyto-

Table 2. Clinicopathologic features of 56 cases of therapy-related myelodysplastic syndrome/acute myeloid leukemia, after azathioprine treatment.

Features	No. (% of total)
Cytopenia preceding t-MDS/AML	
Not available	29 (51)
Nil	16 (29)
Present	11 (20)
Anemia	2
Leukopenia	2
Thrombocytopenia	1
Anemia and leukopenia	2
Leukopenia and thrombocytopenia	1
Pancytopenia	3
Hematologic diagnoses	
Acute myeloid leukemia	31 (55)
Myelodysplastic syndrome	25 (45)
Refractory anemia	3
Refractory anemia with ringed sideroblasts	2
Refractory cytopenia with multilineage dysplasia	2
Refractory anemia with excess of blasts	7
Refractory anemia with excess of blasts in transform	ation 3
Myelodysplastic syndrome progressing to acute	
myeloid leukemia	8
Karyotype	
Monosomy 7	15 (27)
Deletion of long arm of chromosome 7	7 (13)
Deletion of long arm of chromosome 5	2 (4)
Deletion of long arm of chromosomes 5 and 7	1 (2)
Deletion of long arm of chromosome 20	2 (4)
Aberration of chromosome 11q23	1 (2)
Inversion 16	1 (2)
Normal	2 (4)
Complex	2 (4)
Not available	23
Outcome	
Died of disease	37 (66)
Alive after treatment	12 (21)
Not available	7

penias recovered. Although the cytopenias were attributed to marrow toxicity of azathioprine, in 1 case it was associated with the concomitant use of allopurinol³³.

t-MDS/AML. AML was the diagnosis in 55% of cases. For patients presenting with MDS, 18 (32%) had excessive leukemic blasts (refractory anemia with excess of blasts, refractory anemia with excess of blasts in transformation) or finally transformed into AML. Hence, 87% of patients presented with a leukemic disease. Only 13% of patients had MDS with a more chronic course (refractory anemia, refractory anemia with ringed sideroblasts, and refractory anemia with multilineage dysplasia).

Karyotypic aberrations. Cytogenetic analysis was performed in 33 cases. Aberrations of chromosome 7, either as monosomy 7 (absence of one of the homologues), or del(7q) (deletion of the long arm), were the predominant abnormalities, occurring in 22 cases (66%). Five other aberrations were found: del(5q) in 3 patients, del(20q) in 2, rearrangement of 11q23 in 1, inversion of chromosome 16 in 1, and complex (\geq 3 abnormalities) in 2. Two patients had normal cytogenetics.

Outcome. Treatment outcome was dismal, with 37 patients (66%) having died of disease at the time of reporting.

DISCUSSION

This review identified 56 cases of t-MDS/AML after azathioprine treatment. Although in 31 cases other medications had been used previously or concomitantly, most of the drugs, including cyclosporine, prednisolone, gold, penicillamine, and levamisole, were not known to be oncogenic. Cyclophosphamide was the only medication that might contribute to leukemogenesis, but it was used in just 4 cases. Therefore, azathioprine was the only medication that might be related to the leukemogenesis in the majority of cases.

The duration and cumulative dosages of azathioprine preceding t-MDS/AML were variable. For the cohort, a cumulative dose of 146 g (corresponding to a mean daily dosage of 75 mg) of azathioprine was prescribed and the median duration was 65 months before t-MDS/AML developed. Therefore, azathioprine apparently had to be given for a prolonged period before leukemogenesis occurred.

Although the association between azathioprine and t-MDS/AML appears strong, a causal relationship is more difficult to establish. An inherent risk of malignancies is increased in patients with autoimmune diseases⁴³ and organ allografts⁴⁴. Chronic inflammation is an important disease component in these disorders. Inflammatory mediators including chemokines, cytokines, and prostaglandins affect numerous tissue and cellular functions, which may contribute to oncogenesis by promoting the growth and survival of transformed cells, increasing angiogenesis, or interfering with effective immunosurveillance⁴⁵. The concomitant use of immunosuppressive drugs also impairs humoral and cel-

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2010. All rights reserved.

Kwong: Azathioprine and t-MDS/AML

lular immune responses against neoplastic cells. Therefore, it is conceivable that these factors may play a co-carcinogenic role, collaborating with azathioprine in leukemogenesis. Another important observation indicating a leukemogenic role of azathioprine was the cytogenetic findings. In 22 patients, monosomy 7 and/or del(7q) was found. These abnormalities of chromosome 7 are highly characteristic of t-MDS/AML secondary to alkylator-based chemotherapy^{46,47}. In 4 other cases, del(5q) and rearrangement of chromosome 11q23 were observed. These changes are also typical of t-MDS/AML secondary to leukemogenic agents such as topoisomerase inhibitors and radiotherapy⁴⁶⁻⁴⁸. Therefore, of 33 azathioprine-treated patients successfully karyotyped, 26 cases (79%) showed karyotypic aberrations typical of t-MDS/AML secondary to known leukemogenic agents. In vitro data have also suggested that azathioprine might select for mismatch repair deficient cells in the bone marrow. t-MDS/AML developing after azathioprine often showed mismatch repair deficiency, as reflected by microsatellite instability⁴⁹, again supporting a leukemogenic role of azathioprine. These observations strongly implicate azathioprine as a causative agent in t-MDS/AML.

It is unclear whether the occurrence of t-MDS/AML after azathioprine is dose/duration related, or associated with individual susceptibility. Given that a large number of patients receive azathioprine for various indications, and only a relatively limited number of patients develop t-MDS/AML, risk factors in addition to dose/duration may also be involved. Interestingly, of 27 patients where hematologic toxicity was documented, 11 (40%) of them had cytopenias preceding t-MDS/AML, often by years. The reasons for these cytopenias were not given and might be related to excessive doses of azathioprine. However, problems with azathioprine metabolism might be contributory. In 1 case, concomitant allopurinol was prescribed inadvertently, leading to repeated episodes of pancytopenia before t-MDS/AML finally supervened³³. Further, genetic variants encoding for low-activity TPMT may lead to undue marrow toxicity when azathioprine is prescribed. It has been estimated that 10% of the population may have a single deficient gene, and 0.3% may be homozygously deficient⁵⁰. Hence, genetic variants of TPMT, by increasing the effective dose of azathioprine, may enhance the genotoxicity of azathioprine and thus predispose to t-MDS/AML. Therefore, whether antecedent cytopenias during azathioprine treatment reflect genetic problems of drug metabolism and may be harbingers of t-MDS/AML will need to be studied. Unfortunately, none of the reported cases of t-MDS/AML after azathioprine treatment were investigated for possible genetic variants of TPMT.

Because a small but significant number of patients treated with azathioprine developed t-MDS/AML, which bears the genetic hallmarks characteristic of leukemogenic agents, precautions are required during azathioprine treatment. Concomitant allopurinol must be avoided. Routine testing for TPMT variants does not appear warranted⁵⁰. However, when unexpected cytopenias develop, and if facilities are available, testing for TPMT variants may provide useful guidance for future dose adjustments. Finally, until more mechanistic data are available on the risk factors or susceptibility to t-MDS/AML in patients treated with azathioprine, it will be prudent to review the need for azathioprine when it has been prescribed for more than 5 years, or for a cumulative dose exceeding 140 g.

REFERENCES

- Murray JE, Merrill JP, Harrison JH, Wilson RE, Dammin GJ. Prolonged survival of human-kidney homografts by immunosuppressive drug therapy. N Engl J Med 1963;268:1315-23.
- Moens C, Brocteur J. Treatment of rheumatoid arthritis with immunosuppressive drugs. I. Clinical study. Acta Rheumatol Scand 1965;11:212-20.
- Bouroncle BA, Doan CA. Refractory idiopathic thrombocytopenic purpura treated with azathioprine. N Engl J Med 1966;275:630-5.
- Brooke BN, Hoffmann DC, Swarbrick ET. Azathioprine for Crohn's disease. Lancet 1969;2:612-4.
- Theodor E, Gilon E, Waks U. Treatment of ulcerative colitis with azathioprine. Br Med J 1968;4:741-3.
- Multiple Sclerosis Therapy Consensus Group (MSTCG), Wiendl H, Toyka KV, Rieckmann P, Gold R, Hartung HP, Hohlfeld R. Basic and escalating immunomodulatory treatments in multiple sclerosis: current therapeutic recommendations. J Neurol 2008;255:1449-63.
- Karran P. Thiopurines, DNA damage, DNA repair and therapy-related cancer. Br Med Bull 2006;79-80:153-70.
- Chalmers AH, Knight PR, Atkinson MR. Conversion of azathioprine into mercaptopurine and mercaptoimidazole derivatives in vitro and during immunosuppressive therapy. Aust J Exp Biol Med Sci 1967;45:681-91.
- Wilmink T, Frick TW. Drug-induced pancreatitis. Drug Saf 1996;14:406-23.
- Bouhnik Y, Lémann M, Mary JY, Scemama G, Taï R, Matuchansky C, et al. Long-term follow-up of patients with Crohn's disease treated with azathioprine or 6-mercaptopurine. Lancet 1996;347:215-9.
- Bastida G, Nos P, Aguas M, Beltrán B, Rubín A, Dasí F, et al. Incidence, risk factors and clinical course of thiopurine-induced liver injury in patients with inflammatory bowel disease. Aliment Pharmacol Ther 2005;22:775-82.
- International Agency for Research on Cancer (IARC). Summaries & Evaluations: Azathioprine. [Internet. Accessed December 10, 2009.] Available from:
- http://www.inchem.org/documents/iarc/suppl7/azathioprine.html 13. Wong G, Chapman JR. Cancers after renal transplantation.
- Transplant Rev 2008;22:141-9.
 14. Curtis RE, Metayer C, Rizzo JD, Socié G, Sobocinski KA, Flowers ME, et al. Impact of chronic GVHD therapy on the development of squamous-cell cancers after hematopoietic stem-cell transplantation: an international case-control study. Blood 2005;105:3802-11.
- 15. Cobau CD, Sheon RP, Kirsner AB. Immunosuppressive drugs and acute leukemia. Ann Intern Med 1973;79:131-2.
- Silvergleid AJ, Schrier SL. Acute myelogenous leukemia in two patients treated with azathioprine for nonmalignant diseases. Am J Med 1974;57:885-8.
- Seidenfeld AM, Smythe HA, Ogryzlo MA, Urowitz MB, Dotten DA. Acute leukemia in rheumatoid arthritis treated with cytotoxic agents. J Rheumatol 1976;3:295-304.

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2010. All rights reserved.

APPENDIX

Supplementary table. Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) in 56 patients treated with azathioprine.

Page 8	See		Primary Diagnosis	Time	Dose	Azathioprin Other Drugs	Cytopenia	Blood Disease	Karyotype	Outcome,	Referen
ase	363	315	rminary biagnosis	mo	g	Other Drugs	Cytopenia	Brood Discase	Ratyotype	mo	Meleren
	_										
		67		24	77	Cyclo, Pred	WBC, Plat	AML	NA	Dead, 2	15
		32		34	153	Pred	NIL	AML	NA	Dead, 5	16
		23		44	NA	Pred	Plat	AML	NA	Alive	
		57		30	109	Au, Cyclo, Pred		AML	NA	NA	17
		68		65	255	Pred	NA	AML	NA	NA	
		37		56	NA	Nil	NA	AML	NA	NA	18
	F.	38		57	NA	Nil	NA	AML	NA	NA	
		23		10	52	Pred	Nil	AML	NA	Died, 2	19
	F	73		36	92	Nil	Nil	RAEB	NA	Dead, 0.5	20
0	М	47	Kidney transplant	6	19	Nil	NA	AML	NA	NA	21
1	М	53	Kidney transplant	36	NA	Pred	Nil	$RAEB \rightarrow AML$	Complex, del(5q)	Dead, 1	22
2	F	16	SLE	70	1.50	Nil	NA	AML	NA	NA	23
3	F	30	SLE	65	273	Pred	RBC, WBC, Plat	AML	NA	Dead, 3	24
4	М	34	Kidney transplant	78	390	Pred	RBC, WBC, Plat		NA	Dead, 12	25
		35		46	NA	Pred	RBC, WBC, Plat		NA	Dead, 10	26
		36		22	107	Pred	Plat	RAEB-T	Complex	Dead, 5	
	F	36		54	200	Pred	Nil	RAEB-T	NA	Dead, 7	
	-	22		84	290	Pred	Nil	RAEB-T	NA	Dead, 9	
-	F	24	Kidney transplant	108	NA	Nil	Nil	AML	Complex, -7	Dead, 9	27
		52		108	565	Nil	Nil	AML	Complex, del(5q), del(7q)		28
	F	72		86	260	Au, Pen, Lev	RBC, WBC	AML	del(7q)	Dead	29
	F	19		72	127	Pred	Nil	RCMD	-7	Alive	30
		41			NA	Pred	Nil	AML	Complex	Dead, 4	31
	F			156					-7		21
	F	45	, , , , , , , , , , , , , , , , , , , ,	192	NA	Pred	RBC	AML		Dead, 1	~ ~
	м	39		NA	NA	CsA, Pred	Nil	AML	inv(16)	Alive, 11+	32
	F	44		17	37	Cyclo, Allo	RBC, WBC	AML	-7	Dead, 2	33
7	F	41	SLE	84	89	Pred	WBC	AML	-7	Alive, 2+	
8	F	66	Dermatomyositis	24	109	Pred	WBC	AML	Complex, -7	Dead, 5	34
9	М	56	Lung transplant	NA	NA	CsA, Pred	Nil	AML	NA	Dead, 10	35
0	М	72	Liver transplant	NA	NA	CsA, Pred	Nil	AML	Normal	Dead, 1	
1	М	74	Kidney transplant	NA	NA	CsA, Pred	Nil	AML	t(9;11)(p21;q23)	Dead, 10	
2	М	59	Heart transplant	48	146	CsA, Pred	NA	AML	Complex, del(7q)	Dead, 1	36
3	М	54	Heart transplant	92	NA	CsA, Pred	NA	AML	NA	Dead, 1	
4	М	60		32	72	CsA, Pred	NA	RAEB	-7	Alive, 32	
5	F	62		67	96	CsA, Pred	NA	AML	NA	Dead, 8	
-	M			66	124	CsA, Pred	NA	AML	Complex, -5, -7	Dead, 1	
	NA			132	400	Nil	Nil	RARS	Complex, del(7q), -17	Dead, 24	37
	м		Primary chronic polyarthritis		108	NA	NA	$RA \rightarrow AML$	Normal	Dead	38
	M			64	49	NA	NA	CMML → AML	Complex, del(7q)	Dead	
	F	33		72	520	NA	NA		-7	Dead	
								$CMML \rightarrow AML$			
	F	62		48	136	NA	NA	RAEB-T → AML		Dead	
		45	, , ,	118	576	NA	NA	$RA \rightarrow AML$	NA	Dead	
	F	66		168	360	NA	NA	$RAEB \rightarrow AML$	NA	Dead	
4	F	72	Wegener's granulomatosis	82	147	NA	NA	R.A.	del (5q)	Dead	
5	М	43	Primary chronic polyarthritis	168	379	NA	NA	RAEB	-7	Alive	
6	F	57	Wegener's granulomatosis	34	135	NA	NA	RA	Complex, -7	Dead	
7	М	42	Kidney transplant	84	756	NA	NA	RARS	-7	Dead	
8	F	46		96	146	NA	NA	RAEB	-7	Alive	
	M	71	Primary chronic polyarthritis	24	27	NA	NA	RAEB	NA	Dead	
	F.	41		132	657	NA	NA	$RAEB \rightarrow AML$	-7	Alive	
	Ē.	37		123	627	NA	NA	RAEB	Complex, del(7q)	Alive	
	F	39		98	657	Nil	NA	AML	NA	Alive	39
	F.	48		53	480	CsA, Pred	RBC	RCMD	del(20q)	Alive, 100+	
								RA	del(20q)	Alive, 100+	-40
		53		15	45	CsA, Pred	Nil				41
	F.	64	Hypereosinophilia, vasculitis		263	Cyclo	Nil	AML	del(7q)	Dead, 1 Dead, 2	
6	F	21	Crohn's disease	36	109	Nil	Nil	AML	Complex, -7	Dead, 3	42

Time: total duration of treatment (months); cytopenia: types of cytopenia preceding development of MDS and AML; RAEB: refractory anemia with excess of blasts; RAEB-T: refractory anemia with excess of blasts in transformation; RA: refractory anemia; RARS: refractory anemia with ringed sideroblasts; RCMD: refractory cytopenia with multilineage dysplasia; CMML: chronic myelomonocytic leukemia; NA: not available; complex: 3 or more karyotypic aberrations; -7: monosomy 7; Prod: prednisolone, Au: gold; Pen: penicillamine; Lev: levamisole; CsA: cyclosporin A; Cyclo: cyclophosphamide; Allo: allopurinol; RBC: red blood cells; WBC: white blood cells; Plat: platelets.

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2010. All rights reserved.

Kwong: Azathioprine and t-MDS/AML

- Sheil AG. Cancer in renal allograft recipients in Australia and New Zealand. Transplant Proc 1977;9:1133-6.
- 19. Alexson E, Brandt KD. Acute leukemia after azathioprine treatment of connective tissue disease. Am J Med Sci 1977;273:335-40.
- Gilmore IT, Holden G, Rodan KS. Acute leukaemia during azathioprine therapy. Postgrad Med J 1977;53:173-4.
- Sloan GM, Cole P, Wilson RE. Risk indicators of de novo malignancy in renal transplant recipients. Transplant Proc 1977;9:1129-32.
- 22. Ellerton JA, deVeber GA, Baker MA. Erythroleukemia in a renal transplant recipient. Cancer 1979;43:1924-6.
- Grünwald HW, Rosner F. Acute leukemia and immunosuppressive drug use: a review of patients undergoing immunosuppressive therapy for non-neoplastic diseases. Arch Intern Med 1979;139:461-6.
- Vismans JJ, Briët E, Meijer K, den Ottolander GJ. Azathioprine and subacute myelomonocytic leukemia. Acta Med Scand 1980;207:315-9.
- Hoy WE, Packman CH, Freeman RB. Evolution of acute leukemia in a renal transplant patient – ? Relationship to azathioprine. Transplantation 1982;33:331-3.
- Ihle BU, Constable J, Gordon S, Mahony JF. Myelodysplasia in cadaver renal allografts: a report of four cases. Am J Kidney Dis 1985;5:251-7.
- Vandenberghe EA, Mecucci C, Delannoy A, van den Berghe H. Deletion of 5q by t(5;17) in therapy-related myelodysplastic syndrome. Cancer Genet Cytogenet 1990;48:49-52.
- Krishnan K, Adams P, Silveira S, Sheldon S, Dabich L. Therapy-related acute myeloid leukaemia following immunosuppression with azathioprine for polymyositis. Clin Lab Haematol 1994;16:285-9.
- Mok CC, Kwong YL, Lau CS. Secondary acute myeloid leukaemia with 7q- complicating azathioprine treatment for rheumatoid arthritis. Ann Rheum Dis 1995;54:155-6.
- Renneboog B, Hansen V, Heimann P, De Mulder A, Jannsen F, Ferster A. Spontaneous remission in a patient with therapy-related myelodysplastic syndrome (t-MDS) with monosomy 7. Br J Haematol 1996;92:696-8.
- Subar M, Gucalp R, Benstein J, Williams G, Wiernik PH. Acute leukaemia following renal transplantation. Med Oncol 1996;13:9-13.
- Gorschlüter M, Glasmacher A, Risse F, Klein B, Klehr HU, Mezger J. Successful induction and consolidation therapy of acute myeloid leukaemia in a renal allograft recipient. Nephrol Dial Transplant 1997;12:593-5.
- Kwong YL, Au WY, Liang RH. Acute myeloid leukemia after azathioprine treatment for autoimmune diseases: association with -7/7q-. Cancer Genet Cytogenet 1998;104:94-7.
- Arnold JA, Ranson SA, Abdalla SH. Azathioprine-associated acute myeloid leukaemia with trilineage dysplasia and complex karyotype: a case report and review of the literature. Clin Lab Haematol 1999;21:289-92.
- Thalhammer-Scherrer R, Wieselthaler G, Knoebl P, Schwarzinger I, Simonitsch I, Mitterbauer G, et al. Post-transplant acute myeloid leukemia (PT-AML). Leukemia 1999;13:321-6.

- Huebner G, Karthaus M, Pethig K, Freund M, Ganser A. Myelodysplastic syndrome and acute myelogenous leukemia secondary to heart transplantation. Transplantation 2000;70:688-90.
- Depil S, Lepelley P, Soenen V, Preudhomme C, Lai JL, Broly F, et al. A case of refractory anemia with 17p- syndrome following azathioprine treatment for heart transplantation. Leukemia 2004;18:878.
- Knipp S, Hildebrandt B, Richter J, Haas R, Germing U, Gattermann N. Secondary myelodysplastic syndromes following treatment with azathioprine are associated with aberrations of chromosome 7. Haematologica 2005;90:691-3.
- Putzki N, Knipp S, Ramczykowski T, Vago S, Germing U, Diener HC, et al. Secondary myelodysplastic syndrome following long-term treatment with azathioprine in patients with multiple sclerosis. Mult Scler 2006;12:363-6.
- Menes M, Vakiani E, Keller CE, Ho EK, Colovai A, Nichols G, et al. The spectrum of myelodysplastic syndromes post-solid organ transplantation: a single institutional experience. Leuk Res 2007;31:59-65.
- 41. Park TS, Cheong JW, Song J, Lee KA, Lee SG, Kim J, et al. Acute erythroleukemia with der(1;7)(q10;p10) as a sole acquired abnormality after treatment with azathioprine. Cancer Genet Cytogenet 2008;186:58-60.
- 42. Yenson PR, Forrest D, Schmiegelow K, Dalal BI. Azathioprine-associated acute myeloid leukemia in a patient with Crohn's disease and thiopurine S-methyltransferase deficiency. Am J Hematol 2008;83:80-3.
- Cibere J, Sibley J, Haga M. Rheumatoid arthritis and the risk of malignancy. Arthritis Rheum 1997;40:1580-6.
- 44. Ondrus D, Pribylincová V, Breza J, Bujdák P, Miklosi M, Reznícek J, et al. The incidence of tumours in renal transplant recipients with long-term immunosuppressive therapy. Int Urol Nephrol 1999;31:417-22.
- 45. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008;454:436-44.
- 46. Le Beau MM, Albain KS, Larson RA, Vardiman JW, Davis EM, Blough RR, et al. Clinical and cytogenetic correlations in 63 patients with therapy-related myelodysplastic syndromes and acute nonlymphocytic leukemia: further evidence for characteristic abnormalities of chromosomes no. 5 and 7. J Clin Oncol 1986;4:325-45.
- 47. Nimer SD. Myelodysplastic syndromes. Blood 2008;111:4841-51.
- Pedersen-Bjergaard J, Andersen MK, Andersen MT, Christiansen DH. Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2008;22:240-8.
- Offman J, Opelz G, Doehler B, Cummins D, Halil O, Banner NR, et al. Defective DNA mismatch repair in acute myeloid leukemia/myelodysplastic syndrome after organ transplantation. Blood 2004;104:822-8.
- 50. Marshall E. Preventing toxicity with a gene test. Science 2003;302:588-90.

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2010. All rights reserved.