Shared Epitope and Anti-Cyclic Citrullinated Peptide Antibodies: Relationship with Age at Onset and Duration of Disease in Rheumatoid Arthritis

To the Editor:

Rheumatoid arthritis (RA) is a complex disease with a strong immune inflammatory component. Recent progress in defining the role of genetic factors in RA has been remarkable. It has been proposed that the shared epitope (SE) is a primary genetic element of susceptibility. Citrullination is a post-translational protein modification that is accomplished by deimination of arginine by peptidyl-arginine deiminases. Interestingly, polymorphisms in one member of the family, PADI4, have been associated with RA in Asian populations¹, although this association could not be reproduced in Caucasian populations^{2,3}. An association has been described between the presence of the SE and anti-cyclic citrullinated peptide antibody (anti-CCP) levels, and of each variable with disease severity^{4,5}. Also, anti-CCP-negative disease, with the former subgroup being primarily responsible for association and linkage to HLA-DRB1 SE⁶.

In this cross-sectional study we aimed at analyzing whether the presence of the SE and anti-CCP caused an acceleration in disease development that could be reflected in an earlier age at onset. This acceleration might be considered a sign of a worse prognosis.

We analyzed 411 Spanish patients with RA (76% women) consecutively recruited from a single center, all meeting American College of Rheumatology criteria for RA. Patients' mean age at disease onset was 51 \pm 15 years, and median disease duration was 8 years (range 3–15); 58% of patients carried the SE (Lifecodes HLA-SSO kit; Terpenel-Diagnostics Ltd., Abingdon, UK). The following alleles were identified: DRB1*0101, *0102, *0401, *0404, *0405, *0408, *1001 or *1402. Fifty-four percent of patients presented anti-CCP antibodies (determined by ELISA with Immunoscan Euro-Diagnostica assay; Euro-Diagnostica, Malmoe, Sweden; single testing) and 69% were rheumatoid factor (RF)-positive (all patients who had been RF-positive in just one analysis irrespective of when the analysis had been performed). Statistical analysis was performed with standard statistical software (Stata v 9.0). Normality was tested by skewness and kurtosis tests.

There was a high association between anti-CCP and SE: 68% of 222 anti-CCP-positive individuals were also positive for SE, and only 47% of 189 anti-CCP antibody-negative patients were SE-positive (p = 0.00002; odds ratio 2.39, 95% CI 1.60–3.56; Table 1). In both groups of patients (anti-CCP-positive and anti-CCP-negative), SE positivity was statistically higher than in healthy Spanish controls (32% of 595 individuals; OR 4.53, 95% CI 3.22–6.40 for anti-CCP-positive and OR 1.90, 95% CI 1.34–2.69 for anti-CCP-negative patients). We analyzed whether age at onset is dependent on presence of SE or anti-CCP antibodies; in both cases an earlier age at onset was found in patients with positive SE or anti-CCP,

although no statistical significance was reached (Table 1; p = 0.12 and p = 0.07, respectively). Positivity for both factors simultaneously was associated with an even earlier age at onset when compared with all other patients (48 ± 14 yrs vs 53 ± 18 yrs; p = 0.05), although this comparison did not withstand Bonferroni correction.

It seemed reasonable that patients with early age at onset will probably have a longer disease duration. We found that a clear and highly significant link existed between age at onset and disease duration ($p < 10^{-7}$; r = -0.43).

We analyzed whether disease duration was dependent on SE or presence of anti-CCP (positivity); only the presence of anti-CCP antibodies was associated with disease duration (p = 0.005). The presence of SE showed no statistically significant association with disease duration (p = 0.62; Table 2).

In order to ascertain the relationship between SE, anti-CCP antibodies, age at onset, and disease duration, we performed a univariate analysis of variance test considering all these variables. As Table 1 shows, the trend for association (p = 0.07) observed between anti-CCP antibodies and age at onset disappeared when disease duration was taken into account (p = 0.52). Positivity for both factors (SE and anti-CCP antibodies) simultaneously was not associated with earlier age at onset, when adjusted by disease duration, even when compared with double-negative patients (p = 0.15). Therefore, our data suggest that association of anti-CCP with age at onset is secondary to disease duration.

It can been argued that, as a result of an inflammatory process, anti-CCP antibodies may appear not only before the first symptoms, as has been occasionally described⁷, but also during the course of the disease. According to this idea, we have shown in our study that it is more probable to find anti-CCP antibodies after a long disease history. Indeed, our data suggest that an association exists between anti-CCP antibodies and disease duration (Table 2), but not primarily with age at onset (Table 1). These results are supported by reports that have described the acquisition of anti-CCP antibodies, resulting from an immune response⁸. There are no studies analyzing the prevalence of anti-CCP antibodies during the whole course of the disease (anti-CCP antibodies have been a recent addition to the RA

Table 2. Statistical analysis of disease duration using Mann-Whitney U test.

		р	
SE	+	9 (4–15)	0.62
	_	8 (3–15)	0.02
CCP	+	10 (4–16)	0.005
	-	7 (2–12)	0.005

SE: shared epitope; CCP: Citric citrullinated peptide.

		Age at Disease Onset		Bivariate	Multivariate
		N (%)	Mean yrs (SD)	p, β (95% CI)	p, β (95% CI)
SE	+	240 (59)	50 (± 17)	0.12, -2.46 (-5.58; 0.65)	0.16, -2.07 (-4.95; 0.81)*†
	-	171 (41)	52 (± 14)		
CCP	+	222 (54)	50 (± 15)	0.07, -2.82 (-5.90; 0.26)	0.52 0.02 (2.81, 1.04)**
	-	189 (46)	53 (± 16)		0.52, -0.93 (-3.81; 1.94)**
SE/CC	Р	151 (37)	48 (± 14)		
doub	le-positive			0.05, -4.01 (-8.12-0.10)	0.15, -2.7 (-6.35-0.95)*†
SE/CC doub	P le-negative	100 (24)	53 (± 18)		, (,
	on of disease			<10 ⁻³ , -0.76 (-0.92; -0.61)	<10 ⁻³ , -0.75 (-0.90; -0.59)*

Table 1. Statistical analysis of age at RA onset using parametric test.

* Adjusted by sex. [†] Adjusted by duration of disease. SE: shared epitope; CCP: citric citrullinated peptide.

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2009. All rights reserved.

diagnostic arsenal), but Rönnelid, *et al*⁹ showed that during the first 5 years for anti-CCP-positive individuals, antibody levels remained fairly constant. Nonetheless, it is remarkable that 3 out of 119 anti-CCP-negative patients (2.5%; analyzed with the same anti-CCP assay) became positive after only 1 year of followup.

The fact that anti-CCP-negative patients have higher SE positivity than that found in our healthy control population (49% vs 32%) suggests that the SE contributes independently to RA development, even in absence of anti-CCP antibodies. We are aware that our hypothesis contrasts with current thinking on the role of the SE in RA pathogenesis¹⁰, and further studies will be necessary to fully address this issue.

JEZABEL VARADÉ, MSc, Clinical Immunology Unit; ESTÍBALIZ LOZA-SANTAMARÍA, MD, Rheumatology Unit; MIGUEL FERNÁNDEZ-ARQUERO, PhD, Clinical Immunology Unit; JOSE RAMÓN LAMAS, PhD, Rheumatology Unit; MARIA de los ÁNGELES FIGUEREDO, MD, PhD, Clinical Immunology Unit; JUAN ANGEL JOVER, MD, PhD, Rheumatology Unit; EMILIO GÓMEZ de la CONCHA, MD, PhD, Clinical Immunology Unit; LUIS RODRÍGUEZ, MD, Rheumatology Unit; ELENA URCELAY, PhD, Clinical Immunology Unit; BENJAMÍN FERNÁNDEZ-GUTIÉRREZ, MD, PhD, Rheumatology Unit; ALFONSO MARTÍNEZ-DONCEL, PhD, Clinical Immunology Unit, Hospital Clínico San Carlos, C/Martin Lagos s/n, 28040 Madrid, Spain. Address reprint requests to Dr. Martínez. E-mail: alfmdoncel@terra.es

Supported by "Fundación Mutua Madrileña." Dr. Martínez and J. Varadé are employed with support from the "Fondo de Investigaciones Sanitarias" (04/CP00175 and CA08/00194, respectively). Dr. Urcelay works for the "Fundación para la Investigación Biomédica-Hospital Clínico San Carlos." We are grateful to Carmen Martínez Cuervo and Carmen Poyo Falcon for their expert technical assistance.

REFERENCES

 Yamada R, Suzuki A, Chang X, Yamamoto K. Peptidylarginine deiminase type 4: identification of a rheumatoid arthritis-susceptible gene. Trends Mol Med 2003;9:503-8.

- Barton A, Bowes J, Eyre S, Symmons D, Worthington J, Silman A. Investigation of polymorphisms in the PADI4 gene in determining severity of inflammatory polyarthritis. Ann Rheum Dis 2005;64:1311-5.
- Martinez A, Valdivia A, Pascual-Salcedo D, et al. PADI4 polymorphisms are not associated with rheumatoid arthritis in the Spanish population. Rheumatology 2005;44:1263-6.
- Forslind K, Ahlmen M, Eberhardt K, Hafstrom I, Svensson B. Prediction of radiological outcome in early rheumatoid arthritis in clinical practice: role of antibodies to citrullinated peptides (anti-CCP). Ann Rheum Dis 2004;63:1090-5.
- Wagner U, Kaltenhauser S, Sauer H, et al. HLA markers and prediction of clinical course and outcome in rheumatoid arthritis. Arthritis Rheum 1997;40:341-51.
- Deighton C, Criswell LA. Recent advances in the genetics of rheumatoid arthritis. Curr Rheumatol Rep 2006;8:394-400.
- Rantapaa-Dahlqvist S, de Jong BA, Berglin E, et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 2003;48:2741-9.
- Meyer O, Nicaise-Roland P, Santos MD, et al. Serial determination of cyclic citrullinated peptide autoantibodies predicted five-year radiological outcomes in a prospective cohort of patients with early rheumatoid arthritis. Arthritis Res Ther 2006;8:R40.
- Ronnelid J, Wick MC, Lampa J, et al. Longitudinal analysis of citrullinated protein/peptide antibodies (anti-CP) during 5 year follow up in early rheumatoid arthritis: anti-CP status predicts worse disease activity and greater radiological progression. Ann Rheum Dis 2005;64:1744-9.
- van der Helm-van Mil AH, Verpoort KN, Breedveld FC, Huizinga TW, Toes RE, de Vries RR. The HLA-DRB1 shared epitope alleles are primarily a risk factor for anti-cyclic citrullinated peptide antibodies and are not an independent risk factor for development of rheumatoid arthritis. Arthritis Rheum 2006;54:1117-21.

J Rheumatol 2009;36:5; doi:10.3899/jrheum.080735

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2009. All rights reserved.