Incidence and Prevalence of Psoriatic Arthritis: A Systematic Review

YANNIS ALAMANOS, PARASKEVI V. VOUGLARI, and ALEXANDROS A. DROSOS

ABSTRACT. Objective. Descriptive epidemiological studies of psoriatic arthritis (PsA) in the general population were very limited until the year 2000. Recently, several incidence and prevalence studies of PsA have been reported, suggesting a considerable variation of the disease frequency among different populations. We present a systematic review of incidence and prevalence studies of PsA published after 1987 until December 2006, in order to evaluate and compare their methodology and to summarize their results, and to investigate the possible geographic variations of occurrence of PsA.

Methods. We conducted a MedLine search including all articles published on PsA incidence and prevalence in the general adult population until December 2006. From each study identified, we extracted the country, year of publication, type of study, criteria of case identification, and incidence or prevalence rates. Methodological criteria for quality included the type of study (prospective or retrospective for incidence studies and retrospective or cross-sectional for prevalence studies), the type of incidence and prevalence rates (crude or adjusted), the criteria of case definition, and the description of the characteristics of the population studied.

Results. A total of 13 studies were identified from the literature search meeting our inclusion criteria. There is a wide variation of annual incidence of PsA (median 6.4, range 0.1–23.1 cases per 10^5 inhabitants). One incidence study used European Spondylarthropathy Study Group (ESSG) criteria for case definition, while the other studies were based on a coexistence of psoriasis and arthritis in several ways. Three prevalence studies used ESSG criteria for case identification, while the other studies were based on a coexistence of psoriasis and arthritis in several ways. The prevalence estimates vary from 1 case per 10^5 population in a Japanese study to 420 cases per 10^5 population in an Italian study (median 180).

Conclusion. The occurrence and epidemiological profile of PsA are likely to present important variations among countries and areas of the world. However, several methodological issues and mainly the absence of validated or consensual criteria for case identification and classification of the disease put important limitations on the interpretation of epidemiological data. The establishment of standardized criteria for the diagnosis and classification of PsA cases is necessary for further, valid investigation of the disease epidemiology. (First Release May 1 2008; J Rheumatol 2008;35:1354–8)

Key Indexing Terms:
PSORIATIC ARTHRITIS INCIDENCE PREVALENCE

Psoriatic arthritis (PsA) is a chronic inflammatory arthropathy associated with psoriasis. It was first described as a variant of rheumatoid arthritis (RA). However, PsA is considered a unique arthropathy with distinct clinical and radiological features.

Descriptive epidemiological studies of PsA in the general population were very limited until the year 2000. Lately, several incidence and prevalence studies of PsA have been reported, suggesting a considerable variation of disease frequency among different populations. These studies are expected to present important methodological differences, mainly related to the absence of validated or consensual criteria for case identification and classification of the disease.

We undertook a systematic review of incidence and prevalence studies of PsA, in order to evaluate and compare their methodology and to summarize their results, as well as to investigate the possible geographic variations of occurrence of PsA suggested by these studies.

MATERIALS AND METHODS
We conducted a MedLine search including all articles published on incidence and prevalence of PsA in the general adult population, until December 2006 (key words: “psoriatic arthritis” and “incidence” and “prevalence”). Additional relevant articles were identified using the option...
related articles” in the MedLine database, for the articles meeting the inclusion criteria. Studies published in any language and reporting the incidence and/or prevalence of PsA in general adult populations, based on any identification criteria, were considered eligible for inclusion. The study population should be a general adult population in a defined study area. Studies carried out in selected populations, such as specific age groups, hospitalized patients, psoriatic patients, blood donors, or HLA-positive patients were excluded.

From each study included, we extracted the country, year of publication, type of study, criteria of case identification, description of the population studied, methods of case ascertainment, and prevalence or incidence rates, and for the incidence studies the duration of the study period, the sex ratio and the mean age at diagnosis. Mean annual incidence rates were considered when an incidence study included an observation period longer than 1 year. For prevalence surveys we also considered the sampling methods, and the response rate, when available. When a study reported to the crude and the adjusted incidence and prevalence rates we considered the age-adjusted rates. When a study reported only the crude rates we considered these. As for the criteria of case identification, we considered the reference to specific published identification criteria or the description of inclusion and exclusion criteria stated by the authors.

RESULTS
A total of 13 studies were identified from the literature search meeting the inclusion criteria of the systematic review6-18. Three were incidence studies6-9,11, 7 were prevalence studies12-18, and 3 estimated both prevalence and incidence rates7,8,10.

Table 1 summarizes the results of the MedLine search and inclusion criteria for psoriatic arthritis incidence and prevalence studies.

<table>
<thead>
<tr>
<th>Search Procedure</th>
<th>No. Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Psoriatic arthritis” and “incidence” and “prevalence”</td>
<td>258</td>
</tr>
<tr>
<td>Descriptive epidemiological studies of PsA incidence and prevalence</td>
<td>21</td>
</tr>
<tr>
<td>General population age 16–20 years and over</td>
<td>13</td>
</tr>
<tr>
<td>Incidence studies</td>
<td>3</td>
</tr>
<tr>
<td>Prevalence studies</td>
<td>7</td>
</tr>
<tr>
<td>Incidence and prevalence studies</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2. Incidence studies of PsA.

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Type of Study</th>
<th>Population, age, yrs</th>
<th>Case Definition</th>
<th>Annual Incidence, Cases/10^5 (95% CI)</th>
<th>Male/Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaipainen-Seppanen6, 1996</td>
<td>Finland</td>
<td>Retrospective</td>
<td>16+</td>
<td>Arthritis + psoriasis</td>
<td>6.1 (4.6–7.6)</td>
<td>1.3</td>
</tr>
<tr>
<td>Shbeebe7, 2000</td>
<td>USA</td>
<td>Retrospective</td>
<td>20+</td>
<td>Arthritis + psoriasis</td>
<td>6.6 (5.0–8.2)</td>
<td>0.9</td>
</tr>
<tr>
<td>Hukuda8, 2001</td>
<td>Japan</td>
<td>Retrospective</td>
<td>16+</td>
<td>Arthritis + psoriasis</td>
<td>0.1</td>
<td>Not done</td>
</tr>
<tr>
<td>Soderlin9, 2002</td>
<td>Sweden</td>
<td>Prospective</td>
<td>16+</td>
<td>Arthritis + psoriasis</td>
<td>8 (4–15)</td>
<td>0.4</td>
</tr>
<tr>
<td>Alamanos10, 2003</td>
<td>Greece</td>
<td>Retrospective</td>
<td>16+</td>
<td>ESSG criteria</td>
<td>3.0 (1.6–4.5)</td>
<td>1.0</td>
</tr>
<tr>
<td>Savolainen11, 2003</td>
<td>Finland</td>
<td>Prospective</td>
<td>16+</td>
<td>Arthritis + psoriasis</td>
<td>23.1 (13.2–37.5)</td>
<td>0.7</td>
</tr>
</tbody>
</table>

ESSG: European Spondylarthropathy Study Group19.

---

Alamanos, et al: Incidence and prevalence of PsA

1355

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2008. All rights reserved.
study by Savolainen, et al had a 1-year observation period and the study population included 69,354 adult inhabitants of the city of Kuopio, Finland11.

Four studies estimated the incidence of PsA retrospectively based on medical records6-8,10 and 2 studies were prospective9,11. The two prospective studies found the highest incidence rates. The male/female ratio also varied significantly among studies (median 0.9, range 0.4–1.3). The mean age at diagnosis varied between 40.7 and 52.0 years (median 47.7). Four studies presented incidence rates adjusted for age to the national population, while 2 studies presented crude incidence rates.

Table 3 presents the main characteristics of PsA prevalence studies meeting the inclusion criteria. Four prevalence studies were carried out in South European countries, 3 in a North European Country, 2 in the USA, and one in Japan. The prevalence estimates vary from 1 case per 100,000 population in the Japanese study to 420 cases per 100,000 population in the Italian study (median 180). Three studies used ESSG criteria for case identification, while the other studies were based on a coexistence of psoriasis and arthritis in several ways. Four studies were retrospective, based on medical records7,8,10 and 2 studies were cross-sectional surveys. Cross-sectional surveys tend to present higher prevalence estimates than retrospective studies, even when carried out in the same country, with the exception of 2 older studies published in 1969 and 198412,13. Seven studies presented age-adjusted prevalence estimates, while 3 studies presented crude prevalence rates.

The cross-sectional surveys differed significantly according to their sampling methods. The study by Hellgren12 was conducted in several defined populations in Sweden. In the study by van Romunde, et al13 all residents in the town of Zotmermeer, The Netherlands, aged 20 years and older were asked to participate in a study on arthritis and allied conditions. In the study by Gelfand, et al14 subjects 18 years of age or older with a residential telephone number from the contiguous 48 US states were selected via random digital dialing techniques and were interviewed. In the study by Salaffi, et al15 the sample consisted of subjects aged 18 years and over, selected from the practice lists of 16 general practitioners in a defined area of Italy. The study by Trontzas, et al17 was conducted on the total adult population of 2 urban, one suburban, and 4 rural communities, and on a randomly selected sample of adult inhabitants of one suburban and one rural community of Greece. In the study by Saraux, et al18 a 2-stage random sample was constituted in 7 areas of France from the national telephone directory and the next-birthday method in each household. All the articles presenting these cross-sectional surveys give information about response rates, while none of them compares characteristics between responders and nonresponders.

DISCUSSION
The results of this systematic review suggest a wide variation of the incidence and prevalence of PsA among several countries and areas of the world. The studies meeting the inclusion criteria still differ considerably in their methods. The methodological differences concern mainly the methods of case identification and case recording, as well as the type of incidence and prevalence rates.

The differences in the methods of case identification reflect the absence of commonly accepted criteria for diagnosis and classification of the disease20. Three prevalence studies and one incidence study included were based on the ESSG criteria19. The other studies were based on a coexistence of psoriasis and arthritis in different ways.

According to a recent study comparing the accuracy of published classification criteria for the diagnosis of PsA the ESSG criteria have an inadequate sensitivity for identification and differential diagnosis of PsA21. This could lead to an underestimation of the disease frequency when applying these criteria in an epidemiological study. Other published criteria (Vasey and Espinoza22, McGonagle, et al23, Gladman, et al24) have improved sensitivity and a similar specificity. However, the epidemiological studies do not

Table 3. Prevalence studies of PsA.

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Type of Study</th>
<th>Population, age, yrs</th>
<th>Case Definition</th>
<th>Prevalence Estimate, Cases/10^5 (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hellgren12, 1969</td>
<td>Sweden</td>
<td>Cross-sectional</td>
<td>Not done</td>
<td>Arthritis + psoriasis</td>
<td>20 (9–40)</td>
</tr>
<tr>
<td>Van Romunde13, 1984</td>
<td>Netherlands</td>
<td>Cross-sectional</td>
<td>20+</td>
<td>Arthritis + psoriasis</td>
<td>40 (6–80)</td>
</tr>
<tr>
<td>Shbeeb7, 2000</td>
<td>USA</td>
<td>Retrospective</td>
<td>20+</td>
<td>Arthritis + psoriasis</td>
<td>101 (81–121)</td>
</tr>
<tr>
<td>Hukuda6, 2001</td>
<td>Japan</td>
<td>Retrospective</td>
<td>16+</td>
<td>Arthritis + psoriasis</td>
<td>1</td>
</tr>
<tr>
<td>Alamanos10, 2003</td>
<td>Greece</td>
<td>Retrospective</td>
<td>16+</td>
<td>ESSG criteria</td>
<td>57 (50–63)</td>
</tr>
<tr>
<td>Gelfand14, 2005</td>
<td>USA</td>
<td>Cross-sectional</td>
<td>18+</td>
<td>Arthritis + psoriasis</td>
<td>250 (180–310)</td>
</tr>
<tr>
<td>Salaffi15, 2005</td>
<td>Italy</td>
<td>Cross-sectional</td>
<td>18+</td>
<td>Arthritis + psoriasis</td>
<td>420 (310–610)</td>
</tr>
<tr>
<td>Madlani16, 2005</td>
<td>Norway</td>
<td>Retrospective</td>
<td>20+</td>
<td>Arthritis + psoriasis</td>
<td>195 (180–210)</td>
</tr>
<tr>
<td>Trontzas17, 2005</td>
<td>Greece</td>
<td>Cross-sectional</td>
<td>19+</td>
<td>ESSG criteria</td>
<td>170 (100–240)</td>
</tr>
<tr>
<td>Saraux18, 2005</td>
<td>France</td>
<td>Cross-sectional</td>
<td>19+</td>
<td>ESSG criteria</td>
<td>190 (80–350)</td>
</tr>
</tbody>
</table>

ESSG: European Spondylarthropathy Study Group19.
The different methods of case ascertainment represent another important methodological difference among studies. Most of the incidence studies had a retrospective design based on medical records, and only 2 of them had a prospective design. Prospective studies tend to present higher incidence rates than retrospective studies, but it is difficult to conclude if this difference is related to the case ascertainment method applied in each study, or to higher occurrence of the disease in the study areas. As for the prevalence studies, 6 of them were cross-sectional based on a population survey and the examination of a sample of the general population, and 4 were retrospective based on medical records. Recent cross-sectional surveys are likely to present higher prevalence estimates than retrospective prevalence studies. This could reflect an increased recognition and recording of milder cases in cross-sectional surveys, as they are based on the examination of a sample of the general population. On the other hand, it is possible that these studies overestimate the prevalence, as their response rate is relatively low and a selection bias may influence the results. Two older prevalence studies carried out during the 1960s and 1980s present low prevalence estimates. This finding could be related to an increase in the disease frequency, but could also reflect an increased recognition of the disease during recent years.

Another limitation in data interpretation is that both incidence and prevalence studies used different age-adjustment methods, and some of them did not provide the age-adjusted rates for both sexes. It is unclear whether the same results would be obtained if all studies were assessed using unadjusted rates, or rates adjusted using the same method. We considered the adjusted incidence and prevalence rates when available. Other limitations could be related to the differences of sample sizes, as well as the differing age distributions of the individual study populations.

The methodological differences described above indicate a different methodological quality of the studies included in the systematic review. In this study we considered as methodological quality criteria the type of the study (prospective, retrospective, or cross-sectional), the case-definition and case-ascertainment method, and the type of the estimated rates (crude or adjusted). However, we avoided creating a total quality score for each study, as we think that such a procedure could be considered arbitrary.

Despite these methodological limitations, the results of the studies included suggest a significant geographical variation of occurrence of PsA. This is mainly reflected in the extremely low incidence and prevalence of PsA observed in the Japanese study. That study also found an impressively low frequency of ankylosing spondylitis (AS) and other SpA in the Japanese population. The incidence of PsA in Japan was found to be 64 times lower than the median incidence of all studies, and the prevalence 180-fold lower than the median prevalence of all studies. It is unlikely that such impressive differences may be related to methodological differences between studies and not to a significant variation of occurrence of the disease. The low occurrence of AS and other SpA in the Japanese population has been attributed to the strong association with HLA-B27, which appears with a significantly lower frequency in Japanese than in Caucasians. AS and related SpA are strongly associated with HLA-B27; however, the association of HLA or other genetic factors with PsA remains uncertain. Therefore, the low frequency of PsA in the Japanese study is not likely to be explained by the rarity of HLA-B27 in the Japanese population.

A wide variation of incidence and prevalence rates was observed even among studies carried out in European countries and the USA, as shown in Tables 2 and 3. Even studies from the same country present impressive differences. The age and sex distribution of PsA cases present an important variation as well, suggesting a different epidemiologic profile among countries. It is difficult to interpret the different epidemiologic profile of PsA observed among European and American populations. Genetic, ethnic, environmental, and therapy-related factors have been discussed as being possibly associated with the occurrence and the manifestations of the disease. The role of those factors remains uncertain.

The lack of studies in Africa, large parts of Asia, South America, and Eastern Europe represents another important limitation in the understanding of geographical variations of PsA and of the possible role of genetic and environmental factors in the occurrence of the disease. A number of reports suggest differences in the manifestations of PsA in different ethnic groups, but there are no studies comparing the occurrence and the profile of the disease among different ethnic or racial groups.

We conclude that the occurrence and the epidemiologic profile of PsA are likely to present important variations among countries and areas of the world. However, several methodological issues and mainly the absence of validated or consensual criteria for case identification and classification of the disease put important limitations on the interpretation of epidemiological data. In addition, the lack of studies for most areas of the world limits the understanding of the total picture of PsA epidemiology worldwide, and the possible role of genetic, ethnic, and environmental factors in occurrence of the disease. The establishment of standardized criteria for the diagnosis and classification of PsA is necessary for further valid investigation of the epidemiology and environmental and genetic factors related to the disease occurrence. From this point of view the criteria suggested by the CASPAR study group could offer a basis for more valid and homogenous epidemiological studies, as they appear to be simple and highly specific for identification of PsA.

Alamanos, et al: Incidence and prevalence of PsA

www.jrheum.orgDownloaded on December 19, 2022 from www.jrheum.org
REFERENCES


