Osteoclast Inhibitory Effects of Vitamin K₂ Alone or in Combination with Etidronate or Risedronate in Patients with Rheumatoid Arthritis: 2-Year Results

MINORU MORISHITA, MASAKAZU NAGASHIMA, KOICHI W AUKE, HIROSHI TAKAHASHI, and KENJI TAKENOUCHI

ABSTRACT. Objective. To investigate the effects of vitamin K₂ (Vit K₂) alone or in combination with etidronate and risedronate on bone loss, osteoclast induction, and inflammation in patients with rheumatoid arthritis (RA).

Methods. Subjects comprised 79 patients with RA who were receiving prednisolone, divided into 3 groups: Group K, Vit K₂ alone; Group KE, Vit K₂ plus etidronate; and Group KR, Vit K₂ plus risedronate. During a 24-month treatment and followup period, levels of N-terminal telopeptide of type I collagen (NTx) and bone alkaline phosphatase were measured. Bone mineral density (BMD) of the 3 groups was measured using dual-energy x-ray absorptiometry. Damage score to fingers on radiographic findings were measured according to the Larsen method. Serum levels of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) were measured.

Results. Falls in rate of change of BMD decreased after 18 months in groups KR and KE. Larsen damage scores indicated a significant difference between Group KE and other groups. Significant decreases in serum NTx were observed in groups KE and KR at all timepoints, but not in Group K. Levels of RANKL decreased significantly in all 3 groups.

Conclusion. Vit K₂ alone or in combination with bisphosphonates for treatment of osteoporosis in patients with RA may inhibit osteoclast induction via decreases in levels of RANKL. (First Release Feb 1 2008; J Rheumatol 2008;35:407–13)

Key Indexing Terms:
RHEUMATOID ARTHRITIS VITAMIN K₂ ETIDRONATE RISEDRONATE RECEPTOR ACTIVATOR OF NUCLEAR FACTOR-κB LIGAND OSTEOPROTEGERIN

Bone formation is maintained by continuous remodeling, with a balance between bone resorption by osteoclasts and osteogenesis by osteoblasts. However, loss of bone mass has frequently been observed in patients with rheumatoid arthritis (RA), and the main causes of such osteoporosis are reportedly steroid therapy, postmenopausal changes in hormone balance (postmenopausal osteoporosis), and disuse bone atrophy associated with polyarticular impairment. Conversely, bone and cartilage damage in RA is the result of a process in which cellular and cytokine-mediated inflammation leads to an imbalance between synthesis and degradation. It is becoming clear that the increase in bone resorption in bone diseases such as osteoporosis and RA has an underlying molecular mechanism, namely, the facilitation of osteoclast differentiation and activation by the inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 1 (IL-1). Osteoprotegerin (OPG) is a secreted soluble decoy receptor with homology to members of the TNF receptor family binding to receptor activator of nuclear factor-κB ligand (RANKL) and blocking interactions with receptor activator of NF-κB. OPG thus acts as an antagonist to RANKL. An imbalance in this system may play a part in the skeletal complications of RA. On the other hand, several studies have reported that menatetrenone (MK4), vitamin K₂ (Vit K₂), reduces vertebral and hip fractures and improves bone quality stimulating osteoblastogenesis and inhibiting osteoclastogenesis in human bone marrow cell culture. Vit K₂ also inhibits bone loss induced by prednisolone (PSL) in rats. Bisphosphonates (BP), which are taken up by osteoclasts and macrophages to inhibit the activity of some inflammatory cytokines, are expected to function as inhibitors of inflammation induced by these cells. Etidronate, a non-aminobisphosphonate, is reportedly effective in relieving pain in patients suffering from steroid-induced osteoporosis, postmenopausal...
ostoporosis, and osteoarthritis. Similarly, the aminobiphosphonate risedronate has been reported as an effective treatment for decreased bone density and vertebral fracture in patients receiving corticosteroid therapy\textsuperscript{13,14}. We previously examined whether intermittent cyclical etidronate inhibits bone resorption or inflammatory changes over 1.5 years and 3 years in osteoporotic patients with RA\textsuperscript{15,16}. Etidronate also displayed inhibitory effects on the production of mediators related to inflammation, pain, and angiogenesis, including IL-6, prostaglandin E\(_2\), substance P, and vascular endothelial growth factor in synovial cells of arthritis models\textsuperscript{16}. However, the mechanisms of action for BP have not been completely elucidated. Few clinical reports have described the direct effects of BP on inhibition of bone resorption and bone formation. Further, very few clinical reports have examined the negative or positive effects of BP on production of TNF-\(\alpha\), RANKL, or OPG. Imbalances in serum type I collagen N-telopeptide (NTx) and bone-specific alkaline phosphatase (BAP), TNF-\(\alpha\), and RANKL and OPG may play important roles in bone loss, osteoclast induction, and inflammation.

In our review of prospectively studied patients with RA, we examined the clinical efficacy of Vit K\(_2\) alone and in combination with etidronate or risedronate in maintaining the balance between osteogenesis and bone resorption by measuring NTX, BAP, RANKL, and OPG.

**MATERIALS AND METHODS**

Subjects comprised 79 patients with RA (71 women, 8 men) who fulfilled the diagnostic criteria of the American College of Rheumatology\textsuperscript{17}. The patients were selected from the outpatient section of our department in Nippon Medical School and randomly divided into 3 groups using the double-blind envelope method: Group K, 21 patients (20 women, 1 man) administered 45 mg of Vit K\(_2\); Group KR, 29 patients (25 women, 4 men) administered 45 mg of Vit K\(_2\) and 2.5 mg of risedronate; and Group KE, 29 patients (26 women, 3 men) administered 45 mg of Vit K\(_2\) and 400 mg of etidronate. In Group KE, 400 mg of etidronate was administered orally between meals for 2 weeks, and was withheld for the next 10 weeks. This 12-week period was defined as one cycle. Etidronate was administered in the designated periods for 8 cycles (96 wks, 24 mo).

Mean patient age was 61.4 \(\pm\) 9.6 years in Group K, 62.3 \(\pm\) 9.0 years in Group KR, and 63.4 \(\pm\) 7.2 years in Group KE. Mean disease duration was 18.1 \(\pm\) 14.3 years in Group K, 20.4 \(\pm\) 9.8 years in Group KR, and 20.0 \(\pm\) 12.0 years in Group KE. With respect to the amount of adrenal corticosteroid, 5 mg per day of PSL was administered to 17 patients in Group K, 22 patients in Group KR, and 24 patients in Group KE. Mean dose and duration of PSL were 4.3 \(\pm\) 2.2 mg and 94.9 \(\pm\) 79.3 months. Vitamin D\(_3\) at 1.0 \(\mu\)g/day was administered to 2 patients in Group K, 2 patients in Group KR, and 1 patient in Group KE. No calcium was administered to any of the 3 groups. Almost all patients received disease modifying antirheumatic drugs (DMARD). The most frequently used DMARD were methotrexate (MTX), followed by salazosulfapyridine and bucillamine, but no biological agents (TNF-\(\alpha\) blockers) were prescribed. The numbers of patients who received MTX were 7, 10, and 13 patients in Groups K, KR, and KE, respectively, and mean dose of MTX was 5.3 \(\pm\) 1.6 mg (range 2–8 mg). Patients continued taking medications prescribed before the study was initiated. Dosages of medications including PSL and DMARD were not increased, and no other medications were administered. Our study was approved by the Ethical Committee of Nippon Medical School. All patients provided informed consent (Table 1).

During a 24-month treatment and followup period, bone mineral density (BMD) of the lumbar spine (L3) was measured by dual energy x-ray absorptiometry (DEXA: XR-26; Norland, Fort Atkinson, WI, USA). Based on radiographic findings, damage to fingers was graded from 0 (radiographically normal) to 5 (maximum degree of joint destruction) according to the Larsen method\textsuperscript{18}. Twenty joints, including 10 metacarpophalangeal joints, 8 proximal interphalangeal (PIP) joints, and 2 interphalangeal joints of the thumb on both hands, were evaluated using this method. Evaluation was performed by 2 rheumatologists and if evaluations differed, the lower score was adopted. Serum levels of NTx was measured as a marker for bone resorption using an enzyme linked immunosorbent assay (ELISA) kit (Inverness Medical Professional Diagnostics, Princeton, NJ, USA) and serum BAP, which is known as a sensitive and specific marker of bone formation, was measured using an enzyme immunoassay (ELISA) kit (Quidel, San Diego, CA, USA)\textsuperscript{19,20}.

Serum levels of RANKL measured using an ELISA kit (Biomeda, Vienna, Austria) and serum OPG also measured using an ELISA kit (Immundiagnostik AG, Bensheim, Germany) were compared between groups (Table 2).

**RESULTS**

**Measurement of BMD by DEXA.** Background data in patients with RA are shown in Table 1. No significant differences in these measures were observed between the 3 groups.

Percentage changes in BMD as measured by DEXA at 6 months after the start of treatment in Groups K, KR, and KE were –2.0\%, –1.2\%, and 0.3\%, respectively, and at 24 months were –9.0\%, –5.8\%, and –6.9\%. All 3 groups showed significant falls until 18 months. However, reductions in percentage changes in BMD had decreased after 18 months in Group KR and appeared almost equivalent when 18 month and 24 month changes were compared. In addition, percentage changes in BMD began to increase in Group KE from 18 months. Conversely, falls continued in Group K from 18 months (Figure 1).

Percentage change in Larsen damage score increased with time in Groups K and KR, showing periarticular osteoarticular progression. On the other hand, Larsen damage scores for Group KE at baseline and at 24 months were almost equivalent, displaying a significant difference compared to Groups K and KR (Figure 2).

**Measurement of serum NTx and BAP as markers of bone resorption and formation.** Percentage changes in serum NTx at 6 months after start of treatment in Groups K, KR, and KE were 1.4\%, –8.4\%, and –16.8\%, respectively, and at 24 months were 1.8\%, –19.1\%, and –12.1\% (Figure 3). A significant decrease in serum NTx was observed at 6, 12, and 24 months in Groups KE and KR. Significant differences in NTx were observed at 6, 12, 18, and 24 months between Groups K and KE, and at 24 months between Groups K and KR. Almost
no changes in NTx level were seen in Group K at all time-points, except at 18 months. In addition to NTx, decreases in BAP were also observed, with percentage changes at 6 months after start of treatment of –2.2%, –9.6%, and –9.1%, respectively, in Groups K, KR, and KE (Figure 4). A significant decrease in serum BAP was observed from 6 months in all 3 groups, and percentage changes in BAP started to increase from 18 months.

Measurement of serum RANKL and OPG. RANKL levels in Groups K, KR, and KE were 25.83 pmol/l, 32.01 pmol/l, and 33.97 pmol/l at 6 months after start of treatment and 14.15 pmol/l, 11.19 pmol/l, and 11.69 pmol/l at 24 months (Figure 5). Significant decreases in serum RANKL were observed at 4 months in all 3 groups.

* Fisher’s exact test. ** H-test, † analysis of variance. DMARD: disease modifying antirheumatic drugs; R: risendronate; E: etidronate.
6, 12, 18, and 24 months in all 3 groups. Relationships between RANKL and OPG were compared between before and 24 months after start of treatment in Groups K, KR, and KE. OPG levels in all 3 groups were independent of RANKL. No significant relationship between RANKL and OPG was observed (Figure 6).

**DISCUSSION**

RANKL, which regulates the differentiation and function of osteoclasts, and its decoy receptor (OPG) have been identified...
in recent years, and the regulatory mechanisms underlying bone resorption have gradually been clarified. Our study administered Vit K\textsubscript{2} alone or in combination with etidronate or risedronate to patients with RA accompanied by osteoporosis, and then investigated the effects of these drugs on bone resorption and formation based on various measures, including RANKL and OPG. First, DEXA was performed to investigate percentage changes in BMD. BMD decreased up to 18 months in all 3 groups. In Group KR, the decrease in BMD at 24 months was small, and BMD at this point was comparable to BMD at 18 months. In Group K, BMD continued to decrease at 24 months, and was significantly decreased compared to BP coadministration. Vit K\textsubscript{2} monotherapy reportedly reduces the risk of fractures, but does not change BMD\textsuperscript{10} and results in significantly lower BMD when compared to etidronate alone\textsuperscript{21}. Based on these findings, Vit K\textsubscript{2} should be coadministered with BP in patients with underlying diseases affecting osteoporosis, such as RA.

Many studies have found that administering BP to postmenopausal women with osteoporosis increases BMD\textsuperscript{22,23}. In our study, the control group consisted only of patients with RA, and 79.7\% took an average of 4.3 mg of prednisolone. Patients with RA experience systemic osteoporosis and produce various inflammatory cytokines that accelerate bone resorption in joints, and high concentrations of soluble RANKL have been detected from synovial fluid\textsuperscript{24}. In RA, bone resorption is elevated\textsuperscript{15}, and when Vit K\textsubscript{2} and BP are combined, longterm administration for ≥ 18 months gradually decreases percentage change in BMD. Tascioglu, et al administered alendronate to postmenopausal women with RA accompanied by osteoporosis for at least 2 years, and reported significant increases in BMD\textsuperscript{25}.

Using Larsen damage scores, bone destruction around the metacarpophalangeal and PIP joints was assessed. In Groups K and KR, actual values and percentage change increased over time, suggesting advancing bone destruction around the joint. In Group KE, Larsen damage score remained basically unchanged from 0 to 24 months. In the past, our group found that in patients with RA, Larsen damage score was significantly lower for patients who took etidronate than for patients who did not take etidronate\textsuperscript{16}. Also, in rats with adjuvant arthritis, the number of osteoclasts in joints around the ankle was significantly lower for etidronate than for alendronate\textsuperscript{26}. Based on the results of past and present studies, etidronate appears to suppress bone destruction around joints in periarticular osteoporosis.

We next examined levels of NTx, a marker of bone resorption. At 0, 6, 12, and 24 months, percentage changes in NTx remained mostly unchanged for Group K, and no significant difference was observed between 0 and 24 months. Also, in combination treatment using BP, percentage changes in NTx decreased significantly starting at 6 months for both Groups KE and KR. At 24 months, similar decreases continued, and a significant difference existed between Group K and Vit K\textsubscript{2} + BP groups. Several studies have documented reductions in NTx with administration of BP\textsuperscript{23,27,28}. Also, Vit K\textsubscript{2} monotherapy reportedly does not bring about definite NTx changes\textsuperscript{29}, and our study obtained comparable findings. Urinary deoxypyridinoline (DPD) is a bone resorption marker like NTx, and studies have reported that Vit K\textsubscript{2} monotherapy does not alter urinary DPD levels\textsuperscript{10,29,30}.

RANKL was low for all 3 groups at 6 months after start of administration, and remained low even at 24 months. Some studies have documented that BP administration reduces RANKL\textsuperscript{31,32}. Further, as far as Vit K\textsubscript{2} is concerned, MK4 sup-

![Figure 6. Relationships between RANKL and OPG were compared before and 24 months after start of treatment in Groups K, KR, and KE. RANKL decreased significantly until almost zero at 24 months after start of treatment in all 3 groups, but OPG in all 3 groups was independent of RANKL. No significant relationships between RANKL and OPG were recognized.](https://www.jrheum.org)
presses RANKL expression\textsuperscript{33} and geranylgeraniol (a Vit K\textsubscript{2} side-chain) hinders expression of RANKL to suppress formation of osteoclasts\textsuperscript{34}.

In recent years, the mechanisms of bone resorption have been roughly divided into 3 groups. The first group involves the RANK/RANKL system in osteoclast precursor cells. Second, in areas other than osseous tissue, activated T cells produce RANKL to facilitate differentiation of osteoclast precursor cells. Based on studies that found coculturing activated T cells and osteoclast precursor cells induces osteoclasts\textsuperscript{24,35}, activated T cells act directly on osteoclast precursor cells independent of the first pathway. Third, a pathway exists that does not involve RANKL. Inflammatory cytokines such as TNF-\textgreek{a} and IL-1 accelerate the differentiation of osteoclast precursor cells via their receptors, TNF-\textgreek{a} also accelerates differentiation of osteoclast precursor cells\textsuperscript{36,37}, and IL-1 activates mature osteoclasts\textsuperscript{38}.

In our study, RANKL was decreased by Vit K\textsubscript{2} monotherapy, but NTx did not decrease and remained largely unchanged. Vit K\textsubscript{2} monotherapy suppressed the RANK/RANKL system\textsuperscript{33,34} and lowered RANKL, but in RA, because inflammatory cytokines such as TNF-\textgreek{a} and IL-1 are overproduced, the third pathway, independent of RANKL, was not suppressed. This may explain why levels of NTx did not decrease.

Our findings for NTx and RANKL suggest that combining Vit K\textsubscript{2} and BP suppresses bone resorption. The data for BMD and BAP indicate that longterm combination therapy lasting ≥ 18 months is effective in RA patients with osteoporosis. Further, etidronate appears to suppress bone destruction around joints in periarticular osteoporosis.

REFERENCES

7. Lacey DL, Timms E, Tan HL. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165-76.


