Accuracy and Dispersal of Subacromial and Glenohumeral Injections in Cadavers

NIGEL HANCHARD, DONAL SHANAHAN, TRACEY HOWE, JONATHAN THOMPSON, and LORNA GOODCHILD

ABSTRACT. Objective. “Blind” shoulder injections are often inaccurate and infiltrate untargeted structures. We tested a hypothesis that optimizing certain anatomical and positional factors would improve accuracy and reduce dispersal.

Methods. We evaluated one subacromial and one glenohumeral injection technique on cadavers.

Results. Mean accuracy was 91% for subacromial-targeted and 74 and 91% (worst- and best-case scenarios) for joint-targeted injections. Mean dispersal was 19% for subacromial-targeted and 16% for joint-targeted injections. All results bettered those reported previously.

Conclusion. These “optimized” techniques might improve accuracy and limit dispersal of blind shoulder injections in clinical situations, benefiting efficacy and safety. However, evaluation is required in a clinical setting. (J Rheumatol 2006;33:1143–6)

Key Indexing Terms:
SHOULDER PAIN ANTIINFLAMMATORY AGENTS INJECTIONS CADAVER

Subacromial and glenohumeral steroid injections are common interventions for shoulder pain, but evidence for their efficacy is inconclusive. This may reflect variable injection accuracy across clinical trials, many of which, in keeping with typical clinical practice, employed “blind” techniques. The “hit” rates of clinical studies for blind subacromial bursal/space injections have been reported as 87% for an anterolateral approach; 70% for a posterolateral approach; 67% when performed by an orthopedic consultant or specialist physiotherapist versus 48% when by a registrar, each using an anterior approach; and 65% and 29%, respectively, for a lateral approach. Hit rates of 83% were reported for an anterolateral approach to the subacromial bursa/space in cadavers. Clinical evaluations of glenohumeral injection accuracy reported hit rates of only 11% and 42%. Some small studies with confirmed injection placement have now correlated accuracy and treatment efficacy, signalling that accuracy should be a key consideration for researchers and clinicians alike. Moreover, although evidence for lasting steroid-induced soft tissue damage is circumstantial in humans, a number of controlled animal studies have found intratendinous injections harmful; and in rats, repeated peritendinous (subacromial) triamcinolone injections at human equivalent dosages induced structural changes in even normal rotator cuffs. Thus a further consideration is that of “dispersal”: up to 93% of successful hits on the subacromial bursa are accompanied by coincidental hits on untargeted structures. To test the hypothesis that optimizing certain anatomical and positional factors would improve upon previously reported levels of subacromial and glenohumeral injection accuracy, we evaluated 2 injection techniques (one subacromial, one glenohumeral) on cadavers.

MATERIALS AND METHODS

Injection techniques. Each cadaver was prone, shoulder adducted and slightly flexed, elbow flexed to 90°, and forearm folded across the abdomen.

Subacromial space. A 5 cm 21-gauge needle was inserted 1 cm inferior and 1 cm lateral to the acromial angle, and aimed 1 cm lateral to the mid-acromioclavicular joint-line superiorly (Figure 1). On contacting hard-tissue at a depth compatible with that of the target (the undersurface of the anterior acromion), a 1 ml bolus of acrylic dye, color coded according to the injector and the targeted structure, and pretested for contrast, was administered.

Shoulder joint. A 5 cm 21-gauge needle inserted 1 cm inferior and 1 cm medial to the acromial angle was directed towards the middle of the coracoid’s inferior edge (Figure 2). If not halted by contact with firm/hard tissue at a depth compatible with that of the target (the humeral head), the needle was partially withdrawn and redirected more laterally until this was achieved, whereupon a bolus was injected as described above.

If resistance to injection was met with either technique, the needle was rotated 180° on its long axis (to free the bevel) and withdrawn minimally if resistance persisted.

Injectors. Two specialist physiotherapists, accredited in musculoskeletal injection therapy and with 8 years’ and 18 months’ injection experience, respectively, performed the injections. Both were accustomed to injecting the

From the Teesside Centre for Rehabilitation Sciences, University of Teesside, Middlesbrough; Department of Anatomy and Clinical Skills, School of Medical Education Development, University of Newcastle, Newcastle-upon-Tyne; Glasgow Caledonian University, Glasgow; Physiotherapy Department, York District Hospital, York; and Physiotherapy Department, The James Cook University Hospital, Middlesbrough, UK.

Nigel Hanchard gratefully acknowledges the UK Department of Health for the fellowship award that funded this study.

N.C.A. Hanchard, MSc, Department of Health Research Fellow, Teesside Centre for Rehabilitation Sciences, University of Teesside; D. Shanahan, PhD, Prosector, Department of Anatomy and Clinical Skills, School of Medical Education Development, University of Newcastle; T.E. Howe, PhD, Director, HealthQWest, Glasgow Caledonian University; J. Thompson, BSc (Hons), Extended Scope Practitioner of Physiotherapy, Physiotherapy Department, York District Hospital; L. Goodchild, BSc (Hons), Extended Scope Practitioner of Physiotherapy, Physiotherapy Department, The James Cook University Hospital.

Address reprint requests to N. Hanchard, Teesside Centre for Rehabilitation Sciences (University of Teesside), The James Cook University Hospital, Marton Road, Middlesbrough, TS4 3BW, UK.

Accepted for publication February 27, 2006.

Hanchard, et al: Accuracy of shoulder injections

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2006. All rights reserved.
Figure 1. Subacromial injection. Posterior view. Each double-ended arrow denotes a distance of 1 cm. o: The point of needle entry; x: the point of aim.

Figure 2. Shoulder joint injection. Posterior view. Each double-ended arrow denotes a distance of 1 cm. o: The point of needle entry; x: the point of aim.
RESULTS

There were 2 protocol violations. In both instances the errors were identified, and the data excluded, prior to dissection. Forty-three injections were available for analysis for each target structure.

Following 5 of the joint-targeted injections, dye was identified solely within the fibrous tissue of the capsule. Alternative analyses are presented, respectively counting these as misses and hits (worst- and best-case scenarios).

The subacromial injections were consistently accurate, with 19 out of 21, and 20 out of 22 hits (91%) for the 2 injectors. However, the first injector had more coincidental hits on untargeted structures (5/21, 24%, vs 3/22, 14%). The mean value for coincidental hits during subacromial injections was 19%. The hit rates for the glenohumeral joint were 14/22 (64%) and 18/21 (86%) for the worst-case scenarios (mean 74%), and 19/22 (86%) and 20/21 (95%) for the best-case scenarios (mean 91%). Again, the first injector had a higher rate of coincidental hits on untargeted structures (6/22, 27%, vs 1/21, 5%). The mean value for coincidental hits during joint injections was 16%. The various untargeted structures that were coincidentally hit are itemized in Table 1.

DISCUSSION

The high hit rate for subacromial injections compares favorably with rates reported for other techniques2-7. Also, the rate of unintended hits during subacromially-targeted injections was substantially lower than the 63% (for the subacromial space) and 79–93% (for the subacromial bursa) reported elsewhere3-5,7. For joint-targeted injections, even taking the worst-case scenario, the hit rate was substantially higher than the 11% and 42% reported6,8, while the unintended hit rate was much lower (versus ≥ 89% and ≥ 58%)6,8.

The occasional finding of dye within the fibrous tissue of the joint capsule was unexpected and would be unlikely in vivo. In living subjects, even those with capsular disorders, the shoulder position used would not approach the limit of internal rotation. The posterior capsule would therefore be lax, allowing interposition of injected material between itself and the humeral head. In our sample, however, due to post mortem changes, this position was frequently at end range, and the posterior capsule, drawn tight over the humeral head, prevented such interposition. Replicating these conditions in fresh turkey shoulder joints, we have observed that injections into lax aspects of the capsule penetrate intraarticularly, whereas those into aspects stretched over articular cartilage exude extraarticularly: in embalmed human cadavers, delamination of the relatively desiccated, paper-like capsule is possible instead. Considering these points, infiltrating embalmed

Table 1. Unintended fates of dyes associated with injections targeting the subacromial bursa/space and glenohumeral joint.

<table>
<thead>
<tr>
<th>Intended Target</th>
<th>Unintended Fate of Dye</th>
<th>No. of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subacromial bursa/space, 43 injections</td>
<td>Deep to infraspinatus fascia</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Superficial to joint capsule</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Tracking along supraspinatus fascia</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>In shoulder joint capsule</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Deltoid muscle</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Acromioclavicular joint</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Glenohumeral joint, 43 injections</td>
<td>Subacromial via full-thickness cuff tear</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Subacromial (minor flecking only)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Inferior to spine of scapula</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Infraspinatus muscle</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Deep to infraspinatus fascia</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Dye not found</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
capsular tissue would probably correspond to intraarticular placement in the living subject.

A potential weakness of our study was the need to reflect the dense overlying embalmed skin and subcutaneous tissues to enable palpation. However, this was not thought to compromise the cadaveric model’s validity, because the landmarks remained obscured by a layer of subdermal fat, and the injectors gained little, if any, visual advantage.

In keeping with our hypothesis, several factors may account for the apparent efficacy of the techniques evaluated relative to those previously described. The bony landmarks are readily identifiable, the needle paths accessible, and end-feel is utilized to aid orientation (direction and depth) to the joint cavity or the vault of the subacromial bursa. (Positioning a patient in sitting position might increase subacromial accessibility still further by means of gravitational traction on the arm.) For glenohumeral injections, the adducted and medially rotated shoulder position offers the largest possible area of the head of humerus as a target, and is comfortable for patients with capsular disorders. Additional advantages of the prone lying position would be fixation of the patient’s forearm under the trunk, and consequent stabilization of the shoulder, and a reduced risk of syncope relative to the sitting position.

These optimized techniques — which seem promising in cadavers — may potentially improve the accuracy and limit the dispersal of blind shoulder injections in clinical situations, with possible benefits for efficacy and safety. Clinical evaluation is required to further test this hypothesis.

ACKNOWLEDGMENT

The authors thank Dr. Helen Handoll for her helpful comments on the manuscript, and Mr. Colin Cooling, MA, for providing the line drawings.

REFERENCES