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Editorial

Bones, Blood Vessels, and the Immune
System: What’s the Link?

Since the discovery of the tumor necrosis factor (TNF) fam-
ily members osteoprotegerin (OPG), osteoprotegerin ligand
(OPGL), and RANK (receptor activator of nuclear factor-
κB), much has been learned regarding the role of these 3
molecules in regulating the skeletal and immune systems. In
recent years their role as potential mediators of vascular
function has generated much interest. In particular, there has
been much research into the role of this molecular pathway
in vascular calcification. Calcification is a normal physio-
logic process in certain tissues, but is pathologic in others.
Calcification is part of the normal homeostatic balance in
bone. On the other hand, calcification of extracellular matrix
in tissues that do not normally mineralize can lead to serious
pathology. In this issue of The Journal, Simonini and col-
leagues investigate serum OPG concentrations in patients
with Kawasaki disease1 (KD), the most common cause of
multisystem vasculitis in children and now the number one
cause of acquired heart disease in the developed world2.
These authors report that children with KD had significant-
ly higher levels of OPG in their serum compared to other
children, including those with fever due to infectious causes
and those with systemic lupus erythematosus, as well as
healthy nonfebrile controls. In the small number of children
who developed coronary artery lesions as a result of KD, the
authors found a higher serum level of OPG compared to
those without aneurysms.

Osteoprotegerin ligand, also known as RANK ligand
(RANKL), is a critical regulator of bone remodeling via its
key role in promotion of osteoclastogenesis3-6. OPG is a sol-
uble decoy receptor for OPGL, neutralizing its ability to
bind with RANK and induce a signal. This signaling path-
way also plays an important role in the immune system, with
OPGL functioning in costimulation, T cell–dendritic cell
communication, and dendritic cell survival7,8. In addition to
its activity in the RANK system, OPG also binds as an
antagonist to TRAIL (TNF related apoptosis-inducing lig-

and), another member of the TNF superfamily. TRAIL is
produced by cells of the immune system and participates in
the regulation of cell cycling, inducing cell death via inter-
action with TRAIL receptors9. Thus OPG can act as an
antagonist in 2 independent molecular systems.

The OPG/OPGL/RANK pathway as a molecular link
between the immune system, bone metabolism, and vascu-
lar biology was first suggested in mice with genetic modifi-
cations in these genes. In addition to early onset osteoporo-
sis, OPG knockout mice develop medial calcification of
their muscular arteries, including the renal and aortic arter-
ies. These are sites of abundant endogenous OPG expres-
sion in normal animals10,11. These results pointed to OPG as
a factor possibly linking bone loss and vascular calcifica-
tion, and implied a potential role in vascular protection12.
Interestingly, the ligand and receptor, which are normally
undetectable in normal murine arteries, were expressed
abundantly in the calcified arteries of OPG knockout mice.
OPG rescue experiments revealed differences in the regula-
tion of bone and vascular calcification. Continuous admin-
istration of exogenous OPG to mice during mid-gestation
through to adulthood prevented vascular calcifications,
whereas transient injections of OPG only during the post-
natal period could not reverse vascular calcification, but
were able to change the osteoporotic bone phenotype13.

Vascular endothelial cells are important cellular media-
tors of the inflammatory response, and may be one of the
links between the immune system and vascular pathology
including intravascular calcification. Vascular calcification
can involve differentiation of osteogenic cells from both
vascular smooth muscle cells and calcifying vascular
cells12. A number of molecules are involved in regulating
the development of these cells, including members of the
OPG/OPGL/RANK pathway. Their well described roles in
the immune response and in bone metabolism may also
have important secondary effects on the vascular system in
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addition to its direct activity on vascular cells to influence
their differentiation12.

Vascular calcification, especially calcification of the
arteries, often occurs with atherosclerosis, advancing age,
and certain medical disorders including renal disease and
diabetes mellitus and some genetic diseases14. Interestingly,
serum OPG levels are correlated with increasing age, dia-
betes, and chronic renal failure15-17. It is not clear if circu-
lating levels of OPG are involved directly in promoting vas-
cular calcification or are a protective response to counteract
the calcification process12. OPG plays a role in both the
RANK and TRAIL receptor signaling pathways, with the
potential of mediating vascular pathology both dependent
on, and independent of, OPGL. As well, OPG mediates inte-
grin-dependent survival of endothelial cells by blocking
TRAIL receptor signaling, directly opposite to its effect in
the RANK pathway, which, when inhibited from binding
OPGL, favors programmed cell death in osteoclastic precur-
sors9,18.

OPG functions as a decoy receptor for OPGL, competing
with RANK for binding with OPGL; thus evaluation of
OPG levels must go hand in hand with OPGL levels, as the
balance of the 2 will determine which physiologic activity
prevails. This evaluation may not be a simple one, as OPG
is secreted as a homodimer, not a molecular trimer, unlike
others in the TNF molecular family including OPGL19.
OPGL is made by activated T cells and its expression is
upregulated by many soluble factors affecting bone resorp-
tion, including the proinflammatory cytokines interleukin 1
(IL-1) and TNF-α20. T cells express a cell-surface, mem-
brane-bound OPGL, which is cleaved by metalloproteinases
into a soluble form21. Interestingly, TNF-α and IL-1 upreg-
ulate both the ligand (OPGL) and its antagonist (OPG)22. In
addition to proinflammatory cytokines, OPG is strongly
upregulated by platelet derived growth factor, and also by
stimulation with basic fibroblast growth factor or
angiotensin II, all important regulators of vascular patholo-
gy12,23. One of the major inhibitors of OPG production and
activity is transforming growth factor-ß24.

Calcification of the coronary arteries as a result of KD is
a well recognized but infrequent longterm complication of
coronary artery aneurysms25,26. Calcifications of the coro-
nary arteries can be seen on plain radiographs, as well as
during coronary artery angiography. Ring shaped calcifica-
tion may be associated with severe stenosis of the affected
arterial segment25. Severe coronary artery calcifications can
occasionally be seen by chest radiograph, and attempts at
earlier interventions to visualize microcalcification using
high resolution computer tomography are under way27.
Stenosis of affected coronary artery segments in KD is often
associated with severe vascular calcification, which differs
from atherosclerosis28 and may have important clinical
implications. Rotational ablation appears to have a higher
longterm success rate compared to balloon angioplasty in

patients with calcified coronary artery stenosis secondary to
KD28.

A persistent inflammatory infiltrate and associated vas-
cular changes in the heart can be found in children many
years after acute KD. Inflammatory cells consisting of lym-
phocytes are found in endomyocardial biopsies in 43% of
children post-KD. Fifty-four children were biopsied with a
median time of biopsy at 7 years, with a range of 2 months
to 23 years. An even higher percentage (63%) had marked
microvascular changes involving the capillaries, arterioles,
and small arteries. These percentages included patients with
persistent coronary artery lesions and those in whom the
abnormalities resolved29. The persistent elevation of serum
OPG reported in the study by Simonini and colleagues, even
at 3 months after onset of KD, lends support to mounting
evidence that inflammation and vascular damage persist
long after resolution of the clinical signs and symptoms of
disease, and are more sensitive than traditional laboratory
markers of inflammation in the peripheral blood. Increased
investigation of the OPG family of molecules may open the
door to understanding the link between our immune system,
bones, and blood vessels.
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