High Ferritin and Low Glycosylated Ferritin May Also
Be a Marker of Excessive Macrophage Activation

OLIVIER LAMBOTTE, PATRICE CACOUB, NATHALIE COSTEDOAT, GISELE Le MOEL, ZAHIR AMOURA, and
JEAN-CHARLES PIETTE

ABSTRACT. Objective. A high serum ferritin concentration with a low percentage of glycosylated ferritin (< 20%) have been reported to be a specific marker of active adult Still’s disease (ASD). However, high ferritin levels are found during hemophagocytosis syndrome (HS). We investigated the ferritin level and the percentage of glycosylation in a HS series of various causes.

Methods. Diagnosis of HS was confirmed by erythrophagocytosis pictures on a bone marrow cytology or biopsy in all patients. Serum ferritin concentration was determined on a heterogeneous immunoassay module. Glycosylated ferritin was separated using concanavalin A (Con-A) sepharose 4B chromatography. The nonglycosylated ferritin unbound to Con-A was recovered in the supernatant and quantified with the same procedure. Percentages of glycosylated ferritin less than 20% are considered to be usual in ASD, between 20 and 40% usual in inflammatory syndrome, and between 50 and 80% normal.

Results. In all cases tested during the acute phase of the disease, ferritin blood level was high and the percentage of glycosylated ferritin was low, less than 20%.

Conclusion. The combination of high ferritin level and low percentage of glycosylation may be a marker of excessive macrophage activation. (J Rheumatol 2003;30:1027–8)

Key Indexing Terms: FERRITIN MACROPHAGE ACTIVATION GLYCOSYLATED FERRITIN HEMOPHAGOCYTOSIS SYNDROME

Elevated serum ferritin concentration is a frequent finding in active adult Still’s disease (ASD), and has been proposed as a criterion for the diagnosis of ASD1. However, serum ferritin level is increased in inflammatory syndromes, and markedly elevated levels are found not only in ASD but also in hemophagocytosis syndrome (HS) and some liver cytolytic diseases2. The differential diagnosis between active ASD and HS may be difficult. Although the hemogram is usually different in ASD and HS, with hyperleukocytosis and leukopenia, respectively, ASD and HS share some common symptoms — high fever, weight loss, hepatosplenomegaly, lymphadenopathy, rash, and liver dysfunction. Moreover, a confounding point is that hemophagocytosis has been reported during ASD3,4. To improve the diagnostic specificity of ferritin level in active ASD, we investigated the value of ferritin isoforms and the percentage of glycosylation.

MATERIALS AND METHODS
We reviewed all cases of HS diagnosed in our Internal Medicine Department during the last 3 years. The diagnosis of HS, suspected clinically, was confirmed by erythrophagocytosis pictures on a bone marrow cytology or biopsy in all patients. Serum ferritin concentration was determined on a heterogeneous immunoassay module (Dimension RxL, DadeBehring, Paris La Defense, France). Glycosylated ferritin was separated using concanavalin A (Con-A) sepharose 4B chromatography. The nonglycosylated ferritin unbound to Con-A was recovered in the supernatant and quantified with the same procedure. Percentages of glycosylated ferritin less than 20% are considered to be “usual in ASD,” between 20 and 40% “usual in inflammatory syndrome,” and between 50 and 80% normal7.

Two studies5,6 have shown that the combination of a high serum ferritin level and a low percentage of glycosylated ferritin (< 20%) was more specific of active ASD, as compared to other diagnostic markers and “may thus be especially helpful for the differential diagnosis of active ASD”4. Patients with ASD were compared with patients with systemic diseases, infections, and neoplasia. In the same study3, the mean ferritin glycosylation percentage in 120 patients with infectious, systemic, or liver diseases was 31.5% versus 15.9% (p < 0.001) in 49 patients with ASD. However, only 2 control cases had HS.

We investigated the ferritin level and the percentage of glycosylation in a series of cases of HS of various causes and evaluated the specificity of the combination of a high serum ferritin level and a low percentage of glycosylated ferritin.
RESULTS
Eight cases of HS were diagnosed since 1999. In one patient, ferritin level was unavailable. Causes of HS, ferritin levels, percentage of ferritin glycosylation, and the time of sampling (during acute disease or remission) are shown in Table 1. The underlying diseases were 6 cases of non-Hodgkin’s malignant lymphomas (NHML) and 2 cases of severe drug hypersensitivity syndrome, an unusual cause of HS. Ferritin blood level was high in all cases during the acute phase, mean 7545 ± 7386 µg/l (95% CI 189) versus usual values in both male and female patients of 3 to 244 µg/l. Interestingly, as in ASD, the percentage of glycosylated ferritin was low, less than 20%, in all cases tested during the acute phase of the disease (mean 8.4 ± 3%, 95% CI 0.08). During remission, while the ferritin level normalizes, the percentage of glycosylated ferritin remained low in 2/3 cases. This has also been reported in ASD remission. This may suggest that in some patients with ASD or NHML, although they are considered to be in clinical remission, a low grade of macrophage activation persists. Contrasting with data reported in ASD, we did not find a correlation between C-reactive protein level and ferritin levels in the patients described.

DISCUSSION
We conclude the combination of high ferritin level and low glycosylation percentage is not specific to ASD, but is a marker of excessive macrophage activation. Inflammation and fever may induce a high ferritin level by the action of interleukin 1β, which increases ferritin synthesis. Liver cell damage and ferritin release by macrophages after erythrophagocytosis may be other factors of high ferritin concentrations.

REFERENCES

Table 1. Characteristics of patients with hemophagocytosis admitted over 3 years.

<table>
<thead>
<tr>
<th>Case</th>
<th>Sex/ Age</th>
<th>Diagnosis</th>
<th>Time of Sampling</th>
<th>Ferritin Level (normal < 300 µg/l)</th>
<th>GF, %</th>
<th>ESR, mm/h</th>
<th>CPR, mg/l</th>
<th>Fibrinogen, g/l</th>
<th>Leukocytes, /mm³</th>
<th>Hb, g/dl</th>
<th>Platelets, /mm³</th>
<th>LDH (normal < 440 UI/l)</th>
<th>ASAT, (normal < 34 UI/l)</th>
<th>ALAT, (normal < 34 UI/l)</th>
<th>Bilirubin (normal < 17 µmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M 40</td>
<td>NHML</td>
<td>Acute disease</td>
<td>8283</td>
<td>7</td>
<td>11</td>
<td>67</td>
<td>1.2</td>
<td>1580</td>
<td>5.8</td>
<td>55,000</td>
<td>2694</td>
<td>154</td>
<td>408</td>
<td>177</td>
</tr>
<tr>
<td>2</td>
<td>F 52</td>
<td>Serious drug hypersensitivity syndrome</td>
<td>Acute disease</td>
<td>2470</td>
<td>ND</td>
<td>106</td>
<td>62</td>
<td>5.1</td>
<td>1800</td>
<td>7.3</td>
<td>17,000</td>
<td>1150</td>
<td>345</td>
<td>331</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>F 35</td>
<td>NHML</td>
<td>Acute disease</td>
<td>746</td>
<td>7</td>
<td>125</td>
<td>16</td>
<td>1.1</td>
<td>1290</td>
<td>7.7</td>
<td>22,000</td>
<td>1405</td>
<td>95</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>F 23</td>
<td>NHML</td>
<td>Acute disease</td>
<td>1172</td>
<td>11</td>
<td>36</td>
<td>88</td>
<td>5.3</td>
<td>4400</td>
<td>9.2</td>
<td>348,000</td>
<td>1024</td>
<td>66</td>
<td>51</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>M 30</td>
<td>NHML</td>
<td>Remission</td>
<td>120</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>3.8</td>
<td>4500</td>
<td>10.2</td>
<td>442,000</td>
<td>337</td>
<td>27</td>
<td>22</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>F 60</td>
<td>NHML</td>
<td>Acute disease</td>
<td>145</td>
<td>42</td>
<td>36</td>
<td>14</td>
<td>3.7</td>
<td>2330</td>
<td>12.3</td>
<td>212,000</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>7</td>
<td>F 45</td>
<td>Serious drug hypersensitivity syndrome</td>
<td>Acute disease</td>
<td>14,520</td>
<td>12</td>
<td>51</td>
<td>41</td>
<td>1.6</td>
<td>1200</td>
<td>8.1</td>
<td>100,000</td>
<td>3775</td>
<td>181</td>
<td>133</td>
<td>6</td>
</tr>
</tbody>
</table>