Cyclic-AMP Agonists Inhibit Antiphospholipid/β₂-Glycoprotein I Induced Synthesis of Human Platelet Thromboxane A, in Vitro REGINALD OPARA, DICK L. ROBBINS, and VINCENT A. ZIBOH ABSTRACT. Objective. To investigate mechanisms responsible for increased thrombotic activity in systemic lupus erythematosus (SLE) associated with the antiphospholipid syndrome (APS). We had reported that anticardiolipin/β,-glycoprotein I (aCL/β,-GPI) complexes induce platelet overactivity resulting in excessive production of thromboxane A₂ (TXA₂). Presumably this occurs by decreased platelet cyclic AMP (cAMP) activity and results in increased platelet aggregation. > Methods. We stimulated platelet intracellular cAMP generation with known cAMP agonists (dibutyryl cAMP, theophylline, and prostaglandin E₁) and measured aCL/β₂-GPI induced platelet TXB₂ production in vitro. Isolated human platelets were prelabeled with ¹⁴C-arachidonic acid and then challenged with aCL/B2-GPI in the presence or absence of cAMP-activating substances. The resulting ¹⁴C labeled TXB₂ was quantified by thin layer chromatography and radioactive scanning. Results. We found a marked decrease in aCL/B₂-GPI induced platelet TXB₂ production by the cAMP agonists in a dose dependent manner. > Conclusion. Our findings suggest the usefulness of cAMP agonists in the control of thrombosis in some patients with SLE and APS. (J Rheumatol 2003;30:55-9) Key Indexing Terms: ANTIPHOSPHOLIPID ANTIBODIES ANTIPHOSPHOLIPID SYNDROME THROMBOXANE A, **PLATELETS** Systemic lupus erythematosus (SLE) is an autoimmune disease in which some patients are predisposed to vascular thrombosis and/or fetal loss. Antiphospholipid syndrome (APS) can be defined as an observable correlation between the presence of antiphospholipid (aPL) antibodies, e.g., anticardiolipin (aCL) and/or lupus anticoagulant and vascular thrombosis and/or repeated fetal loss¹. aPL are autoantibodies that can recognize endogenous phospholipids and coagulation cofactors as antigens². Thus, it is believed that aCL is responsible for the APS in some patients with SLE. However, it is unclear how aCL produces the effects of fetal loss and thrombosis. Thromboxane A_2 (TXA₂) is the major cyclooxygenase product in platelets and it is likely that APS involves increased platelet production of TXA, and aggregation³. We previously hypothesized that β_2 -glycoprotein I (β_2 -GPI) might mediate aCL binding to the activated platelet cell surface by binding with phosphatidylserine, thereby From the Department of Dermatology and Department of Internal Medicine, School of Medicine, University of California at Davis, Davis, California, USA. R. Opara, BS, Medical Student; V.A. Ziboh, PhD, Professor of Dermatology, Department of Dermatology; D.L. Robbins, MD, Professor of Medicine, Department of Internal Medicine. Address reprint requests to Dr. D.L. Robbins, Department of Internal Medicine, TB 192, School of Medicine, University of California at Davis, Davis, CA 95616. E-mail: dlrobbins@ucdavis.edu Submitted May 18, 2001; revision accepted July 10, 2002. promoting increased platelet activation by the aCL/B₂-GPI complexes. We have shown that aCL/\(\beta_2\)-GPI complexes induce an increase in platelet TXB, (a stable metabolite of TXA₂) production and aggregation^{4,5}. It is also likely that fetal loss associated with APS occurs secondary to thrombosis of placental vessels and subsequent placental insufficiency⁶. While the mechanism of thrombosis in APS is vague, the negative effect of prostacyclin (prostaglandin I2, PGI2) on platelet TXA₂ production and platelet aggregation is better understood. PGI, is an endothelially derived cyclooxygenase product that leads to decreased platelet aggregation and vasodilatation. Specifically, PGI, binds to prostacyclin receptor⁷, leading to activation of a signaling system that controls vascular tone and platelet aggregation⁸, resulting in elevations of cyclic AMP (cAMP) and cyclic guanosine monophosphate. The increase in cAMP results in a broad alteration of platelet function, one of which is inhibition of platelet aggregation via cAMP phosphorylation of specific protein kinases and suppression of intracellular Ca⁺⁺. Since a mechanism of PGI, inhibition of platelet aggregation is via the stimulation of adenyl cyclase and accumulation of platelet cAMP, we hypothesized that stimulation of platelet intracellular cAMP generation with compounds known to enhance intracellular cAMP should inhibit aCL/ β_2 -GPI induced platelet TXA $_2$ production in vitro. These effects were measured by the metabolic conversion of Personal, non-commercial use only. The Journal of Rheumatology Copyright © 2003. All rights reserved. ¹⁴C-arachidonic acid (¹⁴C-AA) labeled platelets into platelet ¹⁴C-TXB₂. Thrombin, a naturally occurring protein with high affinity binding sites for platelets, was used as an agonist to stimulate basal platelet TXA₂ production. In a further attempt to mimic *in vivo* conditions found in SLE, aCL/β₂-GPI complexes previously isolated from plasma of patients with SLE were preincubated with normal platelets prior to each incubation and the effect on the metabolism of ¹⁴C-AA labeled platelets into platelet ¹⁴C-TXB₂ was determined. Interestingly, we found that compounds that stimulated cAMP generation produced significant inhibition of aCL/β₂-GPI induced platelet TXB₂ biosynthesis *in vitro*. ## MATERIALS AND METHODS Chemicals and reagents. ¹⁴C-AA was purchased from DuPont (Boston, MA, USA). Thrombin, theophylline, and indomethacin all were purchased from Sigma Chemical Company (St. Louis, MO, USA). Dibutyryl cAMP (db-cAMP) and PGE₁ were purchased from Cayman Chemical Company (Ann Arbor, MI, USA). The aCL/B₂-GPI complex was isolated in our laboratory from the plasma of a patient with SLE and APS⁴. *Preparation of* ¹⁴C-AA *labeled platelets*. Platelets were prepared as described^{4,5}. Briefly, donor blood was mixed with citrate, an anticoagulant, and centrifuged at room temperature to obtain the platelet-rich plasma. ¹⁴C-AA prepared for preincubation with platelet-rich plasma consisted of drying ¹⁴C-AA in a tube under nitrogen gas, then it was dissolved with 1 ml of ethyl ether; 1 ml of Hanks' balanced salt solution (HBSS) was added to each 1 μCi of ¹⁴C-AA in the tube and the ethyl ether in the sample was evaporated off under nitrogen gas. The remaining solution was sonicated. The platelet-rich plasma was incubated 4 h with the ¹⁴C labeled AA to incorporate the ¹⁴C-AA into platelet membrane phospholipids. After centrifugation, the ¹⁴C labeled platelet pellets were washed with Tris-HCl, pH 7.5, and centrifuged. The ¹⁴C labeled platelets were then resuspended in HBSS. From this, sample cells were counted and 1 × 10⁸ platelets were used for each incubation. Aliquots were also taken because platelets containing 10,000–20,000 dpm were necessary for each incubation. Isolation of aCL/β_2 -GPI complex. Isolation of the aCL/ β_2 -GPI complex was performed as described^{4,5}. Although we use the term complex, this methodology may instead isolate a mixture of aCL and β_2 -GPI rather than an actual complex. Briefly, donor plasma from a patient with SLE-APS was subjected to ion exchange chromatography with DEAE-Sephadex (Pharmacia, Uppsala, Sweden). The isolated IgG was then subjected to cardiolipin affinity chromatography, from which the aCL/ β_2 -GPI complex was eluted by linear gradient from 0 to 100% with 0.01 M phosphate buffer (pH 7.5) containing 1 M NaCl. The eluate was assayed for aCL by ELISA and for aCL and β_2 -GPI by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (10%). Incubation of platelets with cAMP agonists or a cyclooxygenase inhibitor (indomethacin). Because cAMP is known to inhibit platelet TXA_2 biosynthesis, we tested the effects of cAMP agonists on aCL/ β_2 -GPI induced platelet TXA_2 biosynthesis. Specifically, $^{14}\text{C-AA}$ labeled platelets were first preincubated for 10 min with varying concentrations of the cAMP activating substances or cyclooxygenase inhibitors to determine the dose dependent effects of these compounds on TXB_2 production. Second, 1 μg of the aCL/ β_2 -GPI complex was added to the preincubated platelets and allowed to preincubate an additional 50 min. Third, the platelets were challenged with 5 units of thrombin and incubated for 20 min. Finally, after centrifugation, the radioactive supernatant was extracted with Folch mixture (chloroform/methanol, 2:1) to isolate the desired radioactive metabolites. Separation of reaction products by thin layer chromatography (TLC). The samples containing ¹⁴C-AA metabolites were dried under nitrogen gas, then redissolved with 100 μ l of chloroform/methanol (2:1) mixture. Samples were then spotted onto activated TLC plates. The plates were developed in the TLC solvent mixture consisting of ethyl acetate:iso-octane:acetic acid:water, 165:75:30:150 (v/v/v/v). After the separation, the plates were allowed to dry at room temperature and then scanned using a Berthold Linear TLC Analyzer to determine the peaks of radioactive metabolites (particularly TXB₃) from ¹⁴C-AA. Separation of radioactive metabolites by TLC. After incubation of $^{14}\text{C-AA}$ platelets with thrombin and aCL/ β_2 -GPI, the incubation compounds were extracted by Folch mixture, dried under nitrogen gas, and spotted onto TLC plates. The ^{14}C radioactive band that comigrated with authentic TXB $_2$ was identified by scanning plates on the Berthold Linear TLC Analyzer. ## **RESULTS** Inhibition of thrombin/aCL/ β_2 -GPI induced platelet TXB₂ production by indomethacin. Figure 1 shows the dose dependent effects of thrombin, aCL/ β_2 -GPI complexes, and indomethacin on platelet conversion of AA (substrate) to TXB₂ in vitro. Data illustrated in Figure 1 show that thrombin produced about a 6-fold increase in AA conversion to TXB₂. Moreover, the aCL/ β_2 -GPI complexes produced roughly 4-fold enhancement of platelet TXB₂ biosynthesis compared with platelets incubated with thrombin alone. Figure 1. Dose dependent inhibitory effects of thrombin/aCL/ β_2 -GPI activated platelet conversion of AA to TXB $_2$ by a NSAID, indomethacin. aCL/ β_2 -GPI complexes produced roughly a 4-fold increase in TXB $_2$ biosynthesis compared to thrombin alone, which was inhibited by indomethacin. IM: indomethacin, P: platelets, T: thrombin. Each experiment was done in triplicate in 3 separate experiments; results are expressed as mean \pm 1 SD. Further, addition of indomethacin in concentrations of 0.1 and 10 μ M to the incubations containing thrombin/aCL/ β_2 -GPI complex decreased platelet TXB₂ production roughly 50% and 75%, respectively. Inhibition of platelet TXB $_2$ production by cAMP agonists. As illustrated in Figure 2, we tested 2 concentrations of PGE $_1$, reported to directly stimulate cAMP by activating adenyl cyclase 12 . As observed, about 60% inhibition occurred at a concentration of 0.3 μ M. No further significant suppression occurred at concentrations as high as 3.0 μ M. Similarly (Figure 3), we tested 3 low concentrations of the ophylline on thrombin/aCL/ β_2 -GPI induced platelet AA conversion to TXB₂. In this case, 0.225 mM and 0.5 mM the ophylline produced 16% and 35% inhibition, respectively, and complete inhibition occurred at a concentration of 1.0 mM. Inhibition of platelet TXB₂ production by synthetic cAMP. Since stimulation of intracellular cAMP by 2 compounds (PGE₁ and theophylline) via different mechanisms of action produced significant inhibition of platelet AA conversion to TXB₂, we examined the direct effect of synthetic dibutyryl cAMP (db-cAMP) on thrombin/aCL/β₂-GPI activated platelets. Using 3 concentrations known to enhance cAMP dependent effects in other systems⁹, we observed dose dependent inhibition of platelet AA conversion to TXB₂ by db-cAMP (Figure 4). Maximal inhibition (45%) occurred at a concentration of 0.3 mM, the lowest db-cAMP concentration examined. Figure 2. Dose dependent inhibitory effects of PGE_1 on thrombin/aCL/ β_2 -GPI activated platelet TXB_2 production. Roughly 60% inhibition occurred at the lowest PGE_1 concentration (0.3 μ M). Each experiment was done in triplicate in 3 separate experiments; results are expressed as mean \pm 1 SD. Figure 3. Dose dependent inhibitory effects of the ophylline on thrombin/aCL/ β_2 -GPI activated platelet AA conversion to TXB₂. The ophylline concentrations of 0.5 mM and 1.0 mM resulted in 35% and complete inhibition, respectively. Each experiment was done in triplicate in 3 separate experiments; results are expressed as mean \pm 1 SD. # DIBUTYL CYCLIC AMP (mM) Figure 4. Dose dependent inhibitory effects of db-cAMP on thrombin/aCL/ B_2 -GPI activated platelet AA conversion to TXB $_2$. A 45% inhibition occurred at db-cAMP concentration of 0.3 mM, the lowest concentration examined. Each experiment was done in triplicate in 3 separate experiments; results are expressed as mean \pm 1 SD. ## **DISCUSSION** Thrombin stimulates platelet TXA_2 biosynthesis, and APS derived aCL/β_2 -GPI complexes stimulate even greater platelet TXA_2 production^{4,5}. Thus, we investigated the effect of cAMP agonists on aCL/β_2 -GPI complex induced platelet TXB_2 biosynthesis. Clearly, there was a significant increase Personal, non-commercial use only. The Journal of Rheumatology Copyright © 2003. All rights reserved. in platelet TXB₂ production by thrombin/aCL/β₂-GPI activated platelets compared to platelets incubated with thrombin alone^{4,5} (Figure 2). Previous studies in our laboratory showed stimulation of platelet TXB₂ production by heat aggregated IgG (nonspecific Fc/FcR effect), and even greater stimulation by aCL (Fab')₂ fragments (specific antibody effect)⁵. Since we used intact aCL in these experiments, TXB₂ stimulation could be due to one or both effects⁵. As a control, thrombin stimulated platelets incubated with aCL/ β_2 -GPI complexes were incubated with a nonsteroidal antiinflammatory drug (NSAID), indomethacin. This drug inhibits platelet TXA₂ production by inhibiting the cyclooxygenase pathway (COX-1). Our data showed that while the thrombin/aCL/ β_2 -GPI complex stimulated platelet TXB₂ production, the addition of a NSAID, indomethacin, caused a decrease in thrombin/aCL/ β_2 -GPI activated platelet TXB₂ production. Specifically, our data show a dose dependent decrease in platelet TXB₂ production in the presence of a NSAID. These results demonstrate that a NSAID inhibits platelet metabolism of AA via the cyclooxygenase pathway. A simplified scenario suggests that aCL/β_2 -GPI induced enhancement of platelet TXA_2 generation from platelet AA is followed by associated platelet aggregation. Associated with this cascade is the vascular endothelial cell generation of PGI_2 from endothelial AA, which is known to stimulate platelet adenyl cyclase activity and thus increase platelet cAMP, an inhibitor of platelet TXA₂ generation and associated platelet aggregation. An increase in platelet cAMP is central in the inhibition of TXA₂. Thus, the stimulation of platelet adenyl cyclase by PGE₁ ⁹, a cyclooxygenase metabolite derived from dietary gamma-linolenic acid, should have an effect similar to PGI₂ ¹⁰ (Figure 5). Receptors for both PGE₁ and PGI₂ in human platelets have been described¹¹, supporting the role of these autocoids in the modulation of platelet/vascular homeostasis. In another experiment, we preincubated thrombin/aCL/ β_2 -GPI activated platelets with theophylline. Theophylline is an antiphosphodiesterase that inhibits the intracellular breakdown of cAMP by phosphodiesterase enzyme to 5'-AMP¹². We observed a dose dependent inhibition of platelet TXB₂ production by theophylline, presumably from its agonistic effects on cAMP activity (Figure 5). Although we observed the dose dependent inhibitory effect of PGE_1 and theophylline on platelet TXB_2 biosynthesis, we attempted to confirm the mechanism for the effect was due to intracellular cAMP. To examine this, thrombin/aCL/ β_2 -GPI activated platelets were preincubated with db-cAMP, a synthetic cAMP. Indeed, db-cAMP produced a dose dependent inhibition of platelet TXB_2 production. Taken together, these data strongly support the notion that cAMP stimulation is involved in the inhibition of TXB_2 production. The major current but potentially dangerous therapeutic intervention for patients with APS is high level anticoagula- Figure 5. Metabolism of arachidonic acid (AA) in endothelial cells and platelets. The figure indicates sites of inhibitory activity produced by cAMP agonists examined in this study. PGI₂ from endothelial cells and PGE₁ from dietary sources stimulate conversion of ATP to cAMP (via adenyl cyclase) in platelets. Theophylline inhibits conversion of cAMP to 5'-AMP by inhibiting platelet phosphodiesterase. db-cAMP is a stable analog of cAMP. Increased cAMP decreases platelet TXA₂ generation and thus platelet aggregation. +: stimulation, -: inhibition, PL: phospholipid, PDE: phosphodiesterase, GLA: gamma-linolenic acid. Personal, non-commercial use only. The Journal of Rheumatology Copyright © 2003. All rights reserved. tion. The use of aspirin, a COX-1 inhibitor, is only mildly beneficial (if at all), and can in some cases result in gastric irritation and the more dangerous induction of anaphylactic asthma. Since data from our study indicate *in vitro* inhibition of thrombin/aCL/B₂-GPI induced platelet TXB₂ production by cAMP agonists, other therapeutic strategies in management of APS might involve the use of intracellular cAMP-stimulating agents, which might inhibit *in vivo* TXA₂ production. The possibilities for such therapeutic intervention deserve to be explored in light of our findings, perhaps mitigating the negative side effects associated with high level anticoagulation. ## **ACKNOWLEDGMENT** The authors thank Stanley Leung for his help in conducting this study. ## REFERENCES - Harris EN. Antiphospholipid syndrome. In: Klippel JH, Weyand CM, Wortmann RL, editors. Primer on the rheumatic diseases. 11th ed. Atlanta: Arthritis Foundation; 1997:313-5. - Roubey RAS. Immunology of the antiphospholipid syndrome. Arthritis Rheum 1996;39:1444-54. - Martinuzzo ME, Maclouf J, Carreras LO, Levy-Toledano S. Antiphospholipid antibodies enhance thrombin-induced platelet activation and thromboxane formation. Thromb Haemost 1993:70:667-71. - Leung S, Ziboh VA, Miller-Blair DJ, Robbins DL. Isolation and purification of anticardiolipin antibody from plasma of a patient - with antiphospholipid syndrome: induced generation of platelet thromboxane-A₂ synthesis. Prostaglandins Leukot Essent Fatty Acids 1996;55:385-93. - Robbins DL, Leung S, Miller-Blair DJ, Ziboh V. Effect of anticardiolipin B₂-glycoprotein I complexes on production of thromboxane A₂ by platelets from patients with the antiphospholipid syndrome. J Rheumatol 1998;25:51-6. - MacLachlan NA, Elder MG. Antiphospholipid antibodies and fetal loss — proposed mechanisms. In: Harris EN, Exner T, Hughes GRV, Asherson RA, editors. Phospholipid binding antibodies. Boston: CRC Press: 1991:355-69. - Walsh M-T, Foley JF, Kinsella BT. The α, but not the β, isoform of the human thromboxane A₂ receptor is a target for prostacyclinmediated desensitization. J Biol Chem 2000;275:20412-23. - 8. Schwarz UR, Welter U, Ergenthaler M. Taming platelets with cyclic nucleotides. Biochem Pharmacologica 2001;62:1153-61. - Gorman RR, Bunting S, Miller OV. Modulation of human platelet adenylate cyclase by prostacyclin (PGX). Prostaglandins 1977;13:377-88. - Asby B. Comparison of iloprost, cicaprost and prostacyclin effects on cyclic AMP metabolism in intact platelets. Prostaglandins 1992;43:255-61. - Dutta-Roy AK, Sinha AK. Purification and properties of prostaglandin E₁/prostacyclin receptor of human blood platelets. J Biol Chem 1987;262:12685-91. - Brown W, Shiozawa C. Cyclic AMP and phosphodiesterase levels in tumor cells. In: Kahn RH, Lands WEM, editors. Prostaglandins and cyclic AMP — biological actions and clinical applications. New York: Academic Press; 1973:21-4.