Methotrexate, Hydroxychloroquine, and Intramuscular Gold in Rheumatoid Arthritis: Relative Area Under the Curve Effectiveness and Sequence Effects

STACEY HURST, MICHAEL J. KALLAN, FREDERICK J. WOLFE, JAMES F. FRIES, and DANIEL A. ALBERT

ABSTRACT. Objective. The use of disease modifying antirheumatic drugs (DMARD) for rheumatoid arthritis (RA) is predicated on the expected value of the treatment course. Most clinical data are generalized from randomized controlled trials (RCT), which may result in estimates that are discordant with clinical experience and cannot address the effects of sequence of drugs. We computed estimates of relative DMARD effectiveness from a large observational database using area under the curve (AUC) data.

Methods. We examined data collected over a 20 year period on 1160 patients who were followed at the Wichita Arthritis Center. We utilized Health Assessment Questionnaire (HAQ) disability index data to quantify the effect of methotrexate (MTX), hydroxychloroquine (HCQ), and injectable gold (gold) on subsequent patient outcome. Using an AUC analysis, we compared length of treatment course, total disability averted, annual disability averted, and percentage of possible disability averted across drugs, and examined differences between first courses of therapy in DMARD naïve patients and subsequent courses of the same and different DMARD in patients.

Results. Patients treated with MTX, HCQ, and gold improved at a rate of −0.33, −0.18 and −0.38 annualized HAQ area units, respectively. Since duration taking drug was greatest for MTX, then HCQ, then gold, the cumulative improvement was greatest with MTX (−1.07) versus gold (−0.74) versus HCQ (−0.47) in disability unit years. All 3 drugs were better cumulatively with earlier disease (MTX −1.74 for < 1 yr vs −0.95 for > 1 yr; HCQ −0.68 vs −0.43; gold −1.71 vs −0.49). A second trial of the same drug was far less effective than the first course. On a percentage of possible improvement basis, these drugs were nearly equal since HCQ is given to less severely affected patients.

Conclusion. MTX cumulatively is the most effective DMARD of these 3 because of the length of the therapeutic segment. In terms of disability averted, none of the agents decrease disability by more than 25% of the theoretically possible improvement. We documented that effectiveness of RA treatment is a function of drug sequence, duration of disease, whether it is a first or second course, and severity of disease. None of these clinically relevant observations have emerged from clinical trials. These methodologic approaches provide important quantitative comparative data and will be useful in further assessment of the relative effectiveness of present and future DMARD.

(J Rheumatol 2002;29:1639-45)

Key Indexing Terms:
RHEUMATOID ARTHRITIS THERAPY DMARD
AREA UNDER THE CURVE OBSERVATIONAL
outcomes over an entire treatment course (i.e., they are right censored); (2) they do not permit estimation of cumulative effects [i.e., they seldom use cumulative or area under the curve (AUC) measures]; (3) they do not reflect the residual effects of prior therapy; (4) they do not examine repeated courses of the same therapy; (5) they underestimate the impact of compliance; (6) they do not account for the effects of co-morbidity; (7) they seldom have more than a single comparator; and (8) patient selection characteristics often limit the generalizability of the results to other patient groups. The clinician needing guidance in complex situations thus has little evidence upon which to base a strategy. Perhaps as a result, clinical effectiveness seems less robust than expected.20-23. Newer strategic approaches to the treatment of RA emphasize early and consistent use of DMARD24,25, often including use of combinations of agents. Accumulated trial data (RCT) support these concepts.26-28. In an earlier study, we utilized 3 different estimates of drug effectiveness to develop a sequential drug strategy using Markov modeling techniques.29. The major conclusions of that study were: (1) The most rapid way to achieve remission is to utilize the most effective agent first. With the DMARD we examined, this was MTX. (2) Based on published measures of efficacy, assuming each drug’s effect is independent, most patients should be improved by the third or fourth agent. (3) There wasn’t a striking difference in efficacy of the DMARD we investigated with the exception of MTX, which was substantially better. (4) If we modeled length of time on each DMARD, the pattern of DMARD use mimicked the sawtooth pattern that has been suggested as a strategic approach to RA treatment.

We examined treatment course therapeutic segments in 3 commonly used DMARD and developed an analytic methodology. We sought to test the results of our prior modeling study by examining a large cohort of patients followed for many years, with documentation of DMARD utilization and measures of drug effectiveness. We examined the following questions: (1) what is the relative cumulative effectiveness of several DMARD in common use; (2) is a DMARD therapeutic segment independent of prior treatment, or are there predictable sequence effects; (3) does the time between original diagnosis and DMARD use have consequences for the overall effectiveness of the DMARD used; (4) is a second course of the same DMARD as good as the first; and (5) are drugs given initially in DMARD-naive patients more effective than when used subsequently in these patients.

MATERIALS AND METHODS

Patient selection. Patients in this series represented a 100% sample of all patients with RA attending the Wichita Arthritis Center outpatient clinic in Wichita, Kansas, from July 1980 through February 1999.39 These patients were seen as part of their ordinary clinical care. The details of this data set have been described.40 All patients satisfied American College of Rheumatology criteria for RA.31 The demographic characteristics of this patient cohort are similar to reported statistics of RA patients: 72% were female, mean age of 54.9 years, with disease duration of 6.7 years. These patients were predominantly (93.9%) Caucasian.

Demographic and clinical variables. Demographic and other variables were captured at each clinic visit, using a method of data capture and entry described by Wolfe20,32-34. Briefly, by detailed self-report questionnaire and interview, we questioned patients about changes in clinical status at each visit. This instrument contains the Health Assessment Questionnaire (HAQ) disability index,35,36 and a variety of other self-reported disease and clinical measures.

The original database consisted of 1853 patients with more than 26,000 observations. We restricted our analysis to patients entered and followed after July 1, 1980, to assure uniform availability of HAQ disability scores, resulting in a core set of 1160 evaluable patients with RA. For each of these patients disease duration, patient demographics, and medication information (nonsteroidal, corticosteroids, DMARD) was available. Patients could have been taking one or more of the following DMARD at any visit: MTX, HCQ, gold, AZA, SSZ, or D-penicillamine (D-Pen). There were also several other combinations of drugs taken, but the number of patients in most groups was small; therefore we focused on MTX, HCQ, and gold therapeutic segments. Each patient visit with all corresponding data was considered one observation. New variables were created to analyze each patient’s clinical course by treatment segments for each DMARD taken. We defined a significant treatment segment as the continuous use of a DMARD for 3 months or greater. There were gaps in DMARD use: a patient taking a particular DMARD for one or more visits might stop for a time and then start again. We considered a gap of ≤ 6 months for HCQ and gold, and a gap of ≤ 3 months for MTX, as one continuous treatment segment. Patients rarely stopped drugs before 3 months; thus observations here include virtually all patients who started a drug. If no DMARD was taken for a period of 3 months or longer it was considered a “no-drug segment.”

The “therapeutic segment” concept was proposed by Fries23 for ARAMIS studies (Arthritis, Rheumatism and Aging Medical Information System) in which assessments were by mailed questionnaire at 6 month intervals, but is equally applicable to clinical studies without fixed intervals between assessments. The concept is familiar as a “treatment course” and the term “segment” reminds us that RA treatment strategies generally include prior and subsequent treatments. The therapeutic segment concept is one way of quantifying longitudinal data on effectiveness.

The prescribing physician (FW) generally used HCQ as the first drug when RA was judged to be mild. In patients with more severe disease, it was used as a subsequent drug when other DMARD failed. Gold was used in more severe cases from 1980 through 1983; thereafter it was replaced by MTX. MTX was originally used in severe RA as a second line drug, but became the first line DMARD for severe disease around 1990. It was used increasingly as the first line drug both in mild and severe RA during this decade. Because of the non-random assignment to treatment, roughly following the rules set out above, conclusions regarding the overall or relative effectiveness of the various treatments will have limitations as to validity, and should be accepted cautiously. While there were data available on the dose of drugs taken, these were in standard ranges and were titrated toward optimal levels for individual patients.

Several different subsets of the data were examined for the various analyses. One subset included information for each patient’s first DMARD trial. Another subset consisted of data for the first time a given drug was used, whether the drug was the first DMARD or not. This subset was then examined to exclude first DMARD in order to analyze sequence effects. A third group contained data for the second or greater trial of a drug for all patients. Lastly, we examined the information for first DMARD use between patients who took their first DMARD within one year of RA diagnosis and those who took it later in the course of their disease.

The primary outcome measure we used was HAQ disability.37 An eligible difference score was one in which there was an initial HAQ score
within the first 3 months of starting a treatment segment and a final HAQ score within 3 months of completing a treatment segment and before starting another DMARD or combination. The effect of a treatment segment was calculated by examining the AUC of HAQ disability (AUC-HAQ).

AUC-HAQ. AUC-HAQ is calculated by using the baseline HAQ score as a reference point, while assuming that no response is a flat line when HAQ score is plotted against time. It is described in mathematical terms as: AUC-HAQ = (area above baseline HAQ reference line) – (area below baseline HAQ reference line), and the magnitude of improvement or worsening is the difference of the AUC-HAQ from 0.

Annualized disability avoided. The AUC annualized disability avoided is the total disability averted, divided by the mean length of the segment in years.

Percentage of possible disability averted. The percentage of possible disability averted is the total disability averted divided by the total disability, if the baseline values were continued for the length of the segment \(\times 100 \) (Figure 1).

The change in AUC-HAQ disability score, rate of change per month, and initial score were calculated for each drug for all patients and for various subsets. The HAQ scores are adjusted for (1) age, (2) baseline HAQ, (3) chronologic date of entry, (4) education level, and (5) prednisone use. The data were analyzed using SAS (version 6.12) software\(^3\).

RESULTS

Table 1 shows the overall effectiveness measures for each of the 3 DMARD, including the average length of time patients received each DMARD. Although there was variability, the average time taking a drug was greatest for MTX (3.23 yrs), next HCQ (2.61 yrs), and lastly gold (1.96 yrs), and each of the durations is statistically different from the others (\(p < 0.05 \)).

Of interest, the average baseline HAQ disability level was substantially higher for MTX and gold than for HCQ (\(p < 0.001 \), consistent with the general guidelines for treatment allocation used. AUC total disability averted was greatest with MTX, then gold, then HCQ (\(p < 0.05 \)). When annualized, however, gold was nonsignificantly better than MTX, both of which were better than HCQ (\(p < 0.01 \)), reflecting the influence of the more lengthy MTX treatment courses as compared with gold.

The percentage of possible disability averted is a newly coined variable that avoids the floor effects of other measures; floor effects work against the agent HCQ, given to less severely ill patients. None of the agents decreased disability by more than 25% of the theoretically possible improvement.

In analysis stratified by initial HAQ score there were significant differences among drugs. The higher the baseline HAQ score (worse disease), the greater the reduction in HAQ scores (more disability averted) for MTX (–0.138 average annual HAQ effect for entry HAQ < 1.0 vs –0.630 for patients with HAQ scores > 2.0). The same trend was present for gold, with a yearly reduction of only 0.060 units for the mildest patients and 0.842 for the most severe. Interestingly, HCQ, which is generally given to patients

![Figure 1. Area under the curve disability. The x-axis measures HAQ score and the y-axis shows time. Each closed circle represents a clinic visit when HAQ is determined. Baseline is a horizontal line constructed from the initial HAQ score. The solid line is the actual plot of HAQ scores. A: disability averted; B: residual disability; C: total potential disability.](image)

<table>
<thead>
<tr>
<th>Drug</th>
<th>N</th>
<th>Average Baseline HAQ</th>
<th>SE</th>
<th>Average Length, yrs</th>
<th>SE</th>
<th>Average Disability Averted, AUC</th>
<th>SE</th>
<th>Annualized AUC Disability Averted</th>
<th>SE</th>
<th>% Possible Disability Averted</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTX</td>
<td>452</td>
<td>1.60</td>
<td>0.03</td>
<td>3.23</td>
<td>0.13</td>
<td>1.07</td>
<td>0.12</td>
<td>0.33</td>
<td>0.03</td>
<td>21.2</td>
</tr>
<tr>
<td>HCQ</td>
<td>267</td>
<td>1.18</td>
<td>0.04</td>
<td>2.61</td>
<td>0.17</td>
<td>0.47</td>
<td>0.13</td>
<td>0.18</td>
<td>0.03</td>
<td>16.0</td>
</tr>
<tr>
<td>Gold</td>
<td>205</td>
<td>1.52</td>
<td>0.05</td>
<td>1.96</td>
<td>0.17</td>
<td>0.74</td>
<td>0.16</td>
<td>0.38</td>
<td>0.04</td>
<td>24.1</td>
</tr>
</tbody>
</table>

Table 1. Responses to treatment courses of MTX, HCQ, and gold.

\(\text{Baseline} \)
with mild disease, works less well in patients with HAQ scores < 1.0 (–0.044/yr) than in more severely affected patients (HAQ scores 1.0–2.0, –0.423/yr), but not as well in the most severely affected patients (HAQ = 2.0, –0.179/yr). The poor response of lower levels of disability is statistically significantly different from the effect of HCQ on moderate or severely ill patients; this is likely a floor effect similar to that seen in Table 1, where HCQ performs better when based on the percentage of possible disability averted.

Only 44 patients received a second or greater course of one of the 3 DMARD studied, but the results were strong and consistent. The second course falls well short of the first (Table 2) (MTX 0.34/yr vs 0.11, p < 0.01; HCQ 0.19/yr vs –0.03, p < 0.05; gold 0.39/yr vs 0.05, p < 0.005). Only a small proportion of the possible disability was averted (~2 to 7.5%). Table 3 compares effectiveness of a drug if it is the first DMARD used in a patient in whom the same drug is given later in the course. Gold is dramatically less effective by all measures, if not used first, by a factor of 2 [e.g., annualized disability averted 0.40 to 0.22 (p < 0.05)]. HCQ averts comparable levels of disability when used first or later; however, the later HCQ patients had much higher baseline disability, and their percentage of possible disability averted was similar. MTX lost very little effectiveness when used later in the treatment sequence; the differences were nonsignificant for all variables examined.

As seen in Table 4 the effect of all 3 DMARD on disability is more pronounced in early, compared with later, disease. This was most evident with gold, which was about 3-fold more effective in reducing disability in patients within the first year of disease compared with those treated later in the course of their RA. However, the same discordance of effect in early versus late disease was noted with MTX and HCQ.

DISCUSSION

Observational databases provide a useful complement to RCT. While databases cannot match RCT for unbiased estimates of drug efficacy, they can theoretically provide better predictions of therapeutic effectiveness. The tradeoff is between the generally better internal validity of the trial and the sometimes better external validity of the observational study. Some limitations, such as regression to the mean, are similar for both types of studies. Some confounders are more typical of observational studies, such as secular time trends, whereas other confounders are more typical of RCT, such as the effects of prior therapy. To predict a treatment response with knowledge right censored at 6–24 months of

Table 2. Responses to treatment courses of MTX, HCQ, and gold (first vs second or later course).

<table>
<thead>
<tr>
<th>Drug</th>
<th>Course</th>
<th>N</th>
<th>Average Baseline HAQ</th>
<th>SE</th>
<th>Average Length, yrs</th>
<th>SE</th>
<th>Average Disability Averted, AUC</th>
<th>SE</th>
<th>Annualized Disability Averted</th>
<th>SE</th>
<th>% Possible Disability Averted</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTX</td>
<td>First</td>
<td>425</td>
<td>1.58</td>
<td>0.04</td>
<td>3.15</td>
<td>0.17</td>
<td>1.09</td>
<td>0.16</td>
<td>0.35</td>
<td>0.04</td>
<td>22.9</td>
</tr>
<tr>
<td></td>
<td>Second or later</td>
<td>27</td>
<td>1.63</td>
<td>0.05</td>
<td>3.35</td>
<td>0.22</td>
<td>1.03</td>
<td>0.19</td>
<td>0.31</td>
<td>0.04</td>
<td>18.8</td>
</tr>
<tr>
<td>HCQ</td>
<td>First</td>
<td>267</td>
<td>1.13</td>
<td>0.05</td>
<td>2.64</td>
<td>0.19</td>
<td>0.48</td>
<td>0.15</td>
<td>0.18</td>
<td>0.03</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>Second or later</td>
<td>11</td>
<td>1.46</td>
<td>0.10</td>
<td>2.49</td>
<td>0.35</td>
<td>0.41</td>
<td>0.31</td>
<td>0.17</td>
<td>0.08</td>
<td>10.6</td>
</tr>
<tr>
<td>Gold</td>
<td>First</td>
<td>205</td>
<td>1.50</td>
<td>0.06</td>
<td>2.06</td>
<td>0.20</td>
<td>0.82</td>
<td>0.18</td>
<td>0.40</td>
<td>0.05</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td>Later DMARD</td>
<td>33</td>
<td>1.60</td>
<td>0.11</td>
<td>1.44</td>
<td>0.24</td>
<td>0.32</td>
<td>0.14</td>
<td>0.22</td>
<td>0.06</td>
<td>13.0</td>
</tr>
</tbody>
</table>

Table 3. Responses to treatment courses of MTX, HCQ, and gold (as first DMARD vs later DMARD).

<table>
<thead>
<tr>
<th>Drug</th>
<th>Course</th>
<th>N</th>
<th>Average Baseline HAQ</th>
<th>SE</th>
<th>Average Length, yrs</th>
<th>SE</th>
<th>Disability Averted, AUC</th>
<th>SE</th>
<th>Annualized Disability Averted</th>
<th>SE</th>
<th>% Possible Disability Averted</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTX</td>
<td>First DMARD</td>
<td>283</td>
<td>1.58</td>
<td>0.04</td>
<td>3.15</td>
<td>0.17</td>
<td>1.09</td>
<td>0.16</td>
<td>0.35</td>
<td>0.04</td>
<td>22.9</td>
</tr>
<tr>
<td></td>
<td>Later DMARD</td>
<td>169</td>
<td>1.63</td>
<td>0.05</td>
<td>3.35</td>
<td>0.22</td>
<td>1.03</td>
<td>0.19</td>
<td>0.31</td>
<td>0.04</td>
<td>18.8</td>
</tr>
<tr>
<td>HCQ</td>
<td>First DMARD</td>
<td>221</td>
<td>1.13</td>
<td>0.05</td>
<td>2.64</td>
<td>0.19</td>
<td>0.48</td>
<td>0.15</td>
<td>0.18</td>
<td>0.03</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>Later DMARD</td>
<td>46</td>
<td>1.46</td>
<td>0.10</td>
<td>2.49</td>
<td>0.35</td>
<td>0.41</td>
<td>0.31</td>
<td>0.17</td>
<td>0.08</td>
<td>10.6</td>
</tr>
<tr>
<td>Gold</td>
<td>First DMARD</td>
<td>172</td>
<td>1.50</td>
<td>0.06</td>
<td>2.06</td>
<td>0.20</td>
<td>0.82</td>
<td>0.18</td>
<td>0.40</td>
<td>0.05</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td>Later DMARD</td>
<td>33</td>
<td>1.60</td>
<td>0.11</td>
<td>1.44</td>
<td>0.24</td>
<td>0.32</td>
<td>0.14</td>
<td>0.22</td>
<td>0.06</td>
<td>13.0</td>
</tr>
</tbody>
</table>
A problem with outcome measures including AUC is that patients do much better if treated within one year of diagnosis, with rates of improvement that range from about 40% in severely affected patients to 25% in less severely affected patients. We suggest that this analysis should also become standard, although similar percentage disability averted may not be exactly comparable from different points on the HAQ scale since HAQ scores may not be a linear metric. Figure 1 illustrates each of the area concepts. The use of the baseline value to estimate expected disability is conservative, given the expected rise in disability with increasing duration of disease.

Patients had the greatest overall benefit with MTX and continued taking MTX longer than the other DMARD. Additionally, our rules of inclusion probably underestimated the effect of MTX. We permitted an initial HAQ score after the drug was started; thus the rapid onset of action of MTX could have generated an improvement before the first HAQ score. MTX is frequently used in conjunction with other agents, so that our analysis, which did not include MTX combination DMARD therapy, systematically underestimates the actual length of time taking MTX. Interestingly, gold is as good as MTX in terms of the rate of improvement; however, patients continue gold for less time, possibly because of greater toxicity, necessitating drug withdrawal, or difficulty of monitoring. We had too few patients in the AZA, D-Pen, SSZ, and combination groups in this cohort to make detailed analyses. HCQ was about one-third or half as effective as gold or MTX.

If gold is used later in a sequence of DMARD, it is much less effective than as first DMARD. This effect has been observed before for gold, but interestingly not for MTX or HCQ. Our data suggest that if gold is to be used it generally should be reserved for patients with severe disease and only if they have not previously received another DMARD. Similarly, HCQ generally should be used for moderately ill patients primarily within the first year of their disease.

On occasion, patients are given second trials of a particular agent, perhaps because a particular toxicity does not preclude a retriial. These data suggest that this is an ineffective therapeutic maneuver for all 3 of these drugs. It is clear that patients do much better if treated within one year of diagnosis, with rates of improvement that range from about

Table 4. Responses to first treatment course of MTX, HCQ, and gold by duration of disease from initial diagnosis.

<table>
<thead>
<tr>
<th>Drug</th>
<th>N</th>
<th>Average Baseline HAQ</th>
<th>Average Length, yrs</th>
<th>SE</th>
<th>Average Disability Averted, AUC</th>
<th>SE</th>
<th>Annualized Disability Averted</th>
<th>SE</th>
<th>% Possible Disability Averted</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTX (1st course & DMARD)</td>
<td>283</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 year from diagnosis</td>
<td>50</td>
<td>1.77</td>
<td>0.09</td>
<td>2.81</td>
<td>0.34</td>
<td>1.74</td>
<td>0.37</td>
<td>0.62</td>
<td>0.08</td>
</tr>
<tr>
<td>≥ 1 year from diagnosis</td>
<td>233</td>
<td>1.54</td>
<td>0.04</td>
<td>3.23</td>
<td>0.18</td>
<td>0.95</td>
<td>0.18</td>
<td>0.29</td>
<td>0.04</td>
</tr>
<tr>
<td>HCQ (1st course & DMARD)</td>
<td>221</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 year from diagnosis</td>
<td>47</td>
<td>0.97</td>
<td>0.08</td>
<td>2.52</td>
<td>0.41</td>
<td>0.68</td>
<td>0.23</td>
<td>0.27</td>
<td>0.06</td>
</tr>
<tr>
<td>≥ 1 year from diagnosis</td>
<td>174</td>
<td>1.17</td>
<td>0.05</td>
<td>2.67</td>
<td>0.22</td>
<td>0.43</td>
<td>0.17</td>
<td>0.16</td>
<td>0.04</td>
</tr>
<tr>
<td>Gold (1st course & DMARD)</td>
<td>172</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 year from diagnosis</td>
<td>47</td>
<td>1.52</td>
<td>0.10</td>
<td>2.28</td>
<td>0.40</td>
<td>1.71</td>
<td>0.49</td>
<td>0.75</td>
<td>0.09</td>
</tr>
<tr>
<td>≥ 1 year from diagnosis</td>
<td>125</td>
<td>1.49</td>
<td>0.07</td>
<td>1.98</td>
<td>0.23</td>
<td>0.49</td>
<td>0.17</td>
<td>0.25</td>
<td>0.05</td>
</tr>
</tbody>
</table>
2-fold to almost 4-fold that of patients treated later in the disease course. Early RA generally improves but remains active and rarely goes into drug-free remission\[45\]. Thus, DMARD is a lifelong therapy.

If one defines a patient responder as a patient who is better at the end than at the start of the treatment trial, then all of the DMARD evaluated give about the same chance of response. However, the magnitude of response differs among the agents. Our findings are very similar to response rates reported in comprehensive metaanalyses\[46\] and in our previous analysis\[20\].

These data support the observation that any DMARD used first is at a selective advantage. This may be due in part to the relative effectiveness of drugs earlier in the course of disease, but the advantage is seen even when one restricts the analysis to patients treated later in the course of their disease, suggesting that DMARD responsiveness defines a subset of patients\[47\]. More important, the baseline for subsequent DMARD, absent a washout period, reflects the partial disease control from a prior DMARD\[44\]. Our data are consistent with strategies that aim for early control of disease activity\[28,48,49\].

It will be interesting to use these techniques to examine data currently being acquired on the newer agents etanercept\[8,12\], infliximab\[9-11\], and leflunomide\[13,14\], and on combination DMARD therapy\[50\]. This study generates a methodologic approach to evaluate old and new drugs, combinations of drugs, and sequences of DMARD. We hope that this approach will assist in improving treatment strategies for rheumatoid arthritis.

REFERENCES

43. Fries JF, Williams CA, Singh G, Ramey DR. Response to therapy in rheumatoid arthritis is influenced by immediately prior therapy. J Rheumatol 1997;24:838-44.