Expression of Cyclin B1 and Cyclin Dependent Kinase Inhibitor p21 in Lymphocytes in Patients with Systemic Lupus Erythematosus

CHEONG-YIP HO, CHUN-KWOK WONG, EDMUND KWOK-MING LI, LAI-SHAN TAM, and CHRISTOPHER WAI-KEI LAM

ABSTRACT. Objective. The roles of cyclins and cyclin dependent kinase (CDK) inhibitors of lymphocytes in the pathogenesis of systemic lupus erythematosus (SLE) are unclear. We measured the expression of cyclin B1 and CDK inhibitor p21 in peripheral blood lymphocytes (PBL) from patients with SLE and controls.

Methods. PBL from 40 SLE patients with renal disease (RSLE), 40 SLE patients without renal disease (SLE), and 28 healthy control subjects were cultured with phytohemagglutinin (PHA). Bivariate distribution of cyclin B1 or p21 expression versus cellular DNA content was assessed by flow cytometry.

Results. Expression of p21 in lymphocytes was significantly lower in patients with RSLE and with SLE than controls (RSLE vs controls and SLE vs controls, both p < 0.001). Expression of cyclin B1 was similar in all groups. The percentages of RSLE lymphocytes in G0/G1 and S phase were significantly reduced and elevated, respectively, compared with controls.

Conclusion. Downregulated p21 in PHA stimulated PBL from patients with SLE may be closely related to aberration of cell division in SLE lymphocytes. (J Rheumatol 2002;29:2537–44)

Key Indexing Terms:
SYSTEMIC LUPUS ERYTHEMATOSUS
CYCLIN DEPENDENT KINASE INHIBITOR
p21
CYCLIN B1
LYMPHOCYTES

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2002. All rights reserved.
It is thought that p21 mediates cell cycle arrest by forming a quaternary complex with cyclins and their complementary CDK, and thereby inhibiting the kinase activity\(^1^4\). It also binds to proliferating-cell nuclear antigen (PCNA) for inhibiting DNA replication\(^1^0\). Malfunction of the p21 protein may contribute to the pathogenesis of systemic autoimmunity, e.g., SLE, through a variety of mechanisms. Inactivating mutations of p21 may allow over-activation and proliferation of otherwise quiescent, low avidity, self-reactive T cells in the peripheral lymphoid organs of healthy individuals\(^1^5\). Studies on a p21\(\rightarrow\) mouse model showed that enhanced p21 deficient T cell proliferation was evident only after prolonged mitogenic T cell stimulation, a circumstance akin to repeated presentation of self-antigens to T cells\(^1^1\). In the absence of p21, prolonged exposure to antigen might thus lead to a disruption of tolerance towards self-antigens, and the resulting accumulation of CD4\(^+\) memory T cells might represent the conversion of autoreactive cells to the memory phenotype\(^1^6,^1^7\).

Cyclin B1 is a mitotic cyclin that complexes with CDK1 (p34\(\text{cdc2}\)) to form the mitosis-promoting factor required for cells to enter mitosis. The onset of cyclin B1 synthesis starts in G2/M checkpoint\(^1^9-^2^1\). Cyclin B2 is a membrane associated B-type cyclin that can also bind and activate CDK1. A recent study has suggested that cyclin B1 may compensate for the loss of cyclin B2 in mutant cyclin B2-null mice and implies that cyclin B1 is capable of targeting the CDK1 to the essential substrates of cyclin B2\(^2^2\). An abundant level of Cyclin B1 has been found in the thymus of lupus prone MRL-lpr/lpr mice compared to other strains, and southern blot analysis of cyclin B1 gene showed restriction fragment length polymorphism and hence multiple forms of cyclin B1 related sequences in various murine genomes\(^2^3\). However, to our knowledge no study on the expression of cyclin B1 in SLE lymphocytes has been conducted.

We examined the expression of CDK inhibitor p21 and cyclin B1 with respect to the cell cycle positions, i.e., the G1/S and G2/M checkpoints, in lymphocytes from patients with SLE and controls stimulated with a T cell mitogen phytohemagglutinin (PHA) in vitro. Using multiparameter flow cytometry as described\(^2^4-^2^6\), we evaluated the direct relationship between the status of individual cells in the cell cycle (DNA content) and their cyclin content as a function of cell cycle phase. We are the first group using this technique to investigate the bivariate distribution of CDK inhibitor (p21) expression versus DNA content in lymphocytes from patients with SLE.

MATERIALS AND METHODS

Patients, controls, and blood samples. Eighty Chinese patients with SLE were recruited at the Rheumatology Outpatient Clinic of the Prince of Wales Hospital, Hong Kong. Diagnosis of SLE was established according to the 1982 revised American Rheumatism Association criteria\(^1^7\), and disease activity was evaluated by the SLE Disease Activity Index (SLEDAI)\(^2^8\). The patients were divided in 2 groups: 40 SLE patients (with or having the history of) renal disease (RSLE group) and 40 SLE patients without renal disease (SLE group). Twenty-eight sex and age matched healthy Chinese volunteers were recruited as controls. Twenty milliliters of heparinized venous peripheral blood were collected from each patient and control. The protocol of this study was approved by the Clinical Research Ethics Committee of the Chinese University of Hong Kong and informed consent was obtained from all participants.

Cell preparation. Peripheral blood lymphocytes (PBL) were isolated from heparinized venous blood by Ficoll-Paque density gradient centrifugation (Amersham Pharmacia Biotech, Uppsala, Sweden). The cells were washed twice with phosphate buffered saline (PBS; Sigma Chemical Co., St. Louis, MO, USA), cultured in RPMI 1640 (Gibco Laboratories, Gaithersburg, MD, USA) supplemented with 10% fetal calf serum (Gibco), 20 mM HEPES (Gibco), and 10 µg/ml PHA (Calbiochem, San Diego, CA, USA) in a density of 10\(^6\) cells/ml at 37°C. 5% CO\(_2\). After 48 h, the cells were harvested for flow cytometric analyses of cyclin B1 and p21.

Immunofluorescence. After 48 h incubation with PHA, the cells were rinsed with ice cold PBS and fixed in 80% ethanol at ~20°C. After several washings with PBS, the cells were permeabilized with 0.25% Triton X-100 (Sigma) in PBS for 5 min on ice. They were then washed and incubated overnight at 4°C with murine monoclonal antibody to human cyclin B1 (FITC conjugated IgG1, clone GNS-1; Becton Dickinson Pharmingen, San Diego, CA, USA) and p21 (IgG1, clone SX118; BD Pharmingen). The anti-p21 Mab was diluted in PBS containing 1% bovine serum albumin (BSA) to obtain 0.25 µg/10\(^6\) cells and both types of Mab were added in 100 µl. For p21 staining, the cells were washed and incubated with a FITC conjugated goat anti-mouse IgG antibody (Zymed Laboratories, South San Francisco, CA, USA) diluted 1:40 in PBS containing 1% BSA for 30 min at room temperature. The isotypic control was prepared identically as described above, except that an isotype-specific antibody was used instead of cyclin B1 or p21 Mab (mouse IgG1 for p21 Mab, Sigma; FITC conjugated mouse IgG1 of clone MOPC-21 for cyclin B1 Mab, BD Pharmingen). After immunofluorescence staining, the cells were washed with PBS and resuspended in 10 µg/ml propidium iodide (Sigma) and 0.1% RNase A (Calbiochem) in PBS, and incubated at room temperature for 20 min prior to flow cytometric measurement.

Flow cytometry. The immunofluorescence stained cells were analyzed with a Becton Dickinson FACSCalibur\(^\text{TM}\) flow cytometer. The red (propidium iodide) and green (FITC) emissions from each cell were separated and quantitated using the built-in FACSCalibur optics. A forward scatter/ side scatter gate was set for lymphocytes (with relative abundance > 90%) to exclude monocytes. Among the lymphocyte population, most were T cells. Bivariate scatter plot of cyclin B1 (or p21)-FITC versus DNA content-propidium iodide was acquired in list modes. Each acquisition and analysis was performed on at least 10,000 events using CellQuest\(^\text{TM}\) software (Becton Dickinson). Each measurement of cyclin expression as a function of the DNA content was obtained from the bivariate cyclin B1 (or p21)-FITC/DNA-propidium iodide scatter plot gated to exclude debris and doublets on the scatter plot of FL-2 width/FL-2 area DNA content. After subtracting the background fluorescence of isotypic controls, results of cellular fluorescence were expressed as median, interquartile range (IQR), minimum and maximum values of mean fluorescence intensity (MFI). Data analysis of cell cycle phase distribution was with ModFit LT\(^\text{TM}\) software (Verity Software House Inc., Topsham, ME, USA).

Statistical analyses. Since cyclin B1 and p21 expressions (MFI) and cell cycle phase distribution in terms of percentage were not in a Gaussian distribution, the Mann-Whitney rank sum test was used to assess differences in cyclin B1 and p21 expressions and cell cycle phase distribution between patients and controls. Results were expressed as median (IQR) or median ± standard deviation. All analyses were performed using the Statistical Package for Social Science (SPSS) version 10.0 for Windows (SPSS, Chicago, IL, USA).
RESULTS

Patients and controls. The age, sex, SLEDAI score, duration of diagnosis, anti-DNA antibody titer, and drug treatment of the study populations are summarized in Table 1. Forty SLE patients with renal disease (39 women, one man, mean ± SD age 38.5 ± 10.3 yrs, range 20–59) and 40 SLE patients (40 women, age 38.4 ± 11.3 yrs, range 20–67) were studied. The mean duration of the diagnosis of SLE at the time when patients were evaluated for this study was 12.4 ± 6.4 years (range 1.7–26.6) and 9.0 ± 6.8 years (range 0.3–25.6) for RSLE and SLE patients, respectively. The mean SLEDAI scores of RSLE and SLE patients were 7.3 ± 5.6 (range 1–20) and 3.2 ± 5.3 (range 1–32), respectively. Patients were undergoing treatment with prednisolone (RSLE 6.7 ± 5.1 mg daily, 92.5%; SLE 3.2 ± 6.6 mg daily, 50.0%), hydroxychloroquine (RSLE 87.5 ± 99.0 mg daily, 50.0%; SLE 112.0 ± 108.0 mg daily, 60.0%), azathioprine (RSLE 20.0 ± 30.0 mg daily, 40.0%; SLE 9.0 ± 30.0 mg daily, 12.5%), cyclosporin A (RSLE 20.9 ± 43.5 mg daily, 22.5%; SLE 0 mg daily, 0%), or in combination. Twenty-eight sex and age matched healthy controls (27 women, one man, age 38.5 ± 7.9 yrs, range 22–51) were studied. The mean concentrations of anti-DNA autoantibodies in RSLE and SLE patients were 401.5 ± 302.9 IU/ml (range 71–1000) and 348.9 ± 325.1 IU/ml (range 77–1000), respectively.

Distribution of lymphocytes in 3 cell cycle phases. Distribution into 3 cell cycle phases (G0/G1, S, and G2/M) of 48 h PHA stimulated PBL from patients and controls was evaluated according to the frequency of DNA content distribution. Table 2 clearly shows that the percentage of RSLE lymphocytes in S phase was significantly elevated compared with the controls [median (IQR) percentages: RSLE 21.6% (15.7–25.0) vs controls 14.8% (9.7–20.9); p = 0.022]. On the other hand, the percentage of RSLE lymphocytes in G0/G1 phase was significantly lower than in controls [RSLE 71.0% (68.8–80.3) vs controls 79.8% (73.0–87.4); p = 0.028]. However, no significant difference could be found in the percentage of cells in G2/M phase between RSLE and control lymphocytes (p > 0.05). Although the percentages of SLE lymphocytes in the 3 phases were different from those of controls, no significant difference was observed (p > 0.05).

Expression of cyclin B1 and p21 in relation to cell progression through S phase. Figure 1 shows the representative scatter plots of bivariate distribution for expression of cyclin B1 or p21 versus DNA content in PBL from RSLE patients, SLE patients, and controls after 48 h PHA stimulation. Expression of cyclin B1 was found to be higher in the G2/M cell population of PBL, while expression of p21 was similar in the G0/G1, S, and G2/M phases. Figure 2A indicates that the expression of cyclin B1 in the G2/M phase was similar in lymphocytes from RSLE and SLE patients and controls (p > 0.05). Figure 2C illustrates that the p21 expression of

Table 1. Characteristics of RSLE and SLE patients and controls.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>RSLE</th>
<th>SLE</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>40</td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td>Female/male</td>
<td>39/1</td>
<td>40/0</td>
<td>27/1</td>
</tr>
<tr>
<td>Age, yrs, mean ± SD (range)</td>
<td>38.5 ± 10.3</td>
<td>38.4 ± 11.3</td>
<td>38.5 ± 7.9</td>
</tr>
<tr>
<td>SLEDAI score, mean ± SD (range)</td>
<td>7.3 ± 5.6</td>
<td>3.2 ± 5.3</td>
<td>NA</td>
</tr>
<tr>
<td>Duration of diagnosis, yrs, mean ± SD (range)</td>
<td>12.4 ± 6.3</td>
<td>9.0 ± 6.8</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-DNA antibody titer, IU/ml, mean ± SD (range)</td>
<td>401.5 ± 302.9</td>
<td>348.9 ± 325.1</td>
<td>NA</td>
</tr>
<tr>
<td>Treatment with prednisolone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients, n (%)</td>
<td>37 (92.5)</td>
<td>20 (50.0)</td>
<td>NA</td>
</tr>
<tr>
<td>Daily dose, mg, mean ± SD</td>
<td>6.7 ± 5.1</td>
<td>3.2 ± 6.6</td>
<td>NA</td>
</tr>
<tr>
<td>Treatment with hydroxychloroquine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients, n (%)</td>
<td>20 (50.0)</td>
<td>24 (60.0)</td>
<td>NA</td>
</tr>
<tr>
<td>Daily dose, mg, mean ± SD</td>
<td>87.5 ± 99.0</td>
<td>112.0 ± 108.0</td>
<td>NA</td>
</tr>
<tr>
<td>Treatment with azathioprine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients, n (%)</td>
<td>16 (40.0)</td>
<td>5 (12.5)</td>
<td>NA</td>
</tr>
<tr>
<td>Daily dose, mg, mean ± SD</td>
<td>20.0 ± 30.0</td>
<td>9.0 ± 30.0</td>
<td>NA</td>
</tr>
<tr>
<td>Treatment with cyclosporin A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients, n (%)</td>
<td>9 (22.5)</td>
<td>0 (0.0)</td>
<td>NA</td>
</tr>
<tr>
<td>Daily dose, mg, mean ± SD</td>
<td>20.9 ± 43.5</td>
<td>0</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA: not applicable.
Table 2. Cell distribution in the 3 phases of the cell cycle. Results are expressed as median (interquartile range) of the percentage distributed in 3 cell cycle phases.

<table>
<thead>
<tr>
<th>Cell Cycle Phase</th>
<th>RSLE, n = 20</th>
<th>SLE, n = 20</th>
<th>Controls, n = 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0/G1</td>
<td>71.0 (68.7–80.3)*</td>
<td>71.8 (67.3–86.4)</td>
<td>79.8 (73.0–87.4)</td>
</tr>
<tr>
<td>S</td>
<td>21.2 (15.7–25.0)**</td>
<td>20.7 (10.7–25.3)</td>
<td>14.8 (9.7–20.9)</td>
</tr>
<tr>
<td>G2/M</td>
<td>6.0 (4.8–7.7)</td>
<td>6.3 (3.0–7.4)</td>
<td>4.9 (2.9–6.9)</td>
</tr>
</tbody>
</table>

Statistical difference between RSLE or SLE patients and controls in 2 independent experiments for each donor was determined by Mann-Whitney rank sum test. * p = 0.028, ** p = 0.022.

Figure 1. Expression of cyclin B1 (A–C) and p21 (D–F) in proliferating lymphocytes from a representative patient with RSLE (A, D) or SLE (B, E) and a control (C, F) in relation to cell cycle position (DNA content). Scatter plots represent bivariate distributions (cyclin B1 or p21 expression vs DNA content) of PBL after 48 h stimulation with PHA. Broken line in each plot represents fluorescence level of the respective isotypic control, i.e., the cells incubated with isotypic IgG. Three cell cycle phases are indicated as G0/G1, S, and G2/M in each plot. The vertical gating windows illustrate the principle of selection of cell subpopulations based on differences in cellular DNA content (the DNA index, DI) to obtain the mean values of cyclin B1 or p21 associated fluorescence per window.
PHA stimulated PBL in RSLE and SLE patients was significantly lower compared with controls [median (IQR) of the MFI: RSLE 72.2 (64.1–88.9) vs controls 230.9 (96.0–283.9); p < 0.001; SLE 83.5 (59.6–84.6) vs controls 230.9 (96.0–283.9); p < 0.001].

Analysis of cyclin B1 or p21 during the S phase was done by electronic gating, i.e., selection of “slices” through the S phase compartment representing subpopulations differing in DNA content, in proportion to the fraction of replicated DNA. The mean value of cyclin or p21 associated fluorescence was estimated for each “slice” to evaluate the variation in the level of protein expression during progression through S phase. As shown in Figure 2B, the expression of cyclin B1 in all 3 groups was maximal in the cells with DNA index of 2.0, i.e., with DNA content equivalent to that of G2/M cells. The level of cyclin B1 rose sharply during the transition from S to G2 phase, especially in the second half of the S phase (DNA index > 1.5). The rate of increase in cyclin B1 level throughout the S phase was similar in patients and controls. In contrast, the expression of p21 in lymphocytes from RSLE and SLE patients was significantly lower compared with controls at various points from the G1 to G2/M phase through the S phase, as shown in Figure 2D (p = 0.008). The level of p21 in controls was upregulated at the G1/S phase transition (at DNA index 1.0–1.2) and rose modestly after the onset of S phase (DNA index > 1.2). The rate of increase in p21 expression during progression through the S phase in both RSLE and SLE patients was similar and was lower than for controls.

DISCUSSION

These results illustrate that the percentage of RSLE lymphocytes in the G0/G1 phase was significantly lower compared to controls, while the percentage in S phase was...
significantly higher (Table 2). However, no significant difference could be found in the patients with SLE. This might be explained by the difference in disease severity between RSLE and SLE patients (Table 1), although no significant correlation between SLEDAI score and the percentage distribution in either G0/G1 or S phase could be found (data not shown). Another study has shown a correlation between serum levels of soluble interleukin 2 (IL-2) receptor and number of proliferating-cell nuclear antigen positive lymphocytes in SLE patients having a higher proportion of T cells in the S phase. In addition, we have described aberrant apoptosis and Fas expression in activated T cells of SLE patients in vitro. These results suggest that the change in cell cycle phase distribution might be related to other proliferation and apoptosis markers in SLE T cells.

Recent studies have shown that in the p21−/− murine model, p21 deficiency results in high titer of anti-DNA autoantibodies, heavy IgG immune complex deposits, and development of severe lupus-like syndrome including lymphadenopathy and glomerulonephritis. Balomenos, et al. illustrated that although p21 deficient T cells responded normally to polyclonal T stimulants (e.g., concanavalin A, phorbol-12-myristate-13-acetate), they failed to undergo p53-dependent cell cycle arrest following DNA damage. They also showed a proliferative advantage over wild-type cells following prolonged IL-2 stimulation, with an increased proportion of cells in the S phase of the cell cycle and accumulation of CD4+ memory cells and activated B cells, as well as loss of tolerance toward nuclear antigens.

Our findings indicate that CDK inhibitor p21 expression of PHA stimulated lymphocytes (predominantly T cells) from both RSLE and SLE patients was significantly down-regulated compared with the controls (Figures 1 and 2). These findings suggest that the lack of p21 expression might contribute to dysregulation of the cell cycle and hence the sustained in vitro proliferation of T cells indicated by an increased proportion of cells in the S phase (Table 2). The bivariate distribution of p21 expression versus DNA content of normal lymphocytes showed that p21 was maintained at a high level during the G1/S transition (Figures 1 and 2), since p21 plays an important role in inhibiting the progress of a cell through the G1/S checkpoint in response to serum starvation, differentiation, and senescence. p21 and other CDK inhibitors like p27 are known to interfere with cell cycling by complexing with cyclins (mainly D type) and CDK subunits and inhibit all CDK involved in G1/S transition. The defective expression of p21 in lymphocytes from RSLE and SLE patients might allow more cells to enter S phase due to the lack of inhibition of cyclins and CDK activities in the G1/S checkpoint, as evidenced by a decrease in the proportion of cells in the G0/G1 phase and an increase in S phase (Table 2).

Tolerance to self-antigens can be induced after activation of T cells under incomplete costimulatory conditions, e.g., absence of an inflammatory environment, leading to nonsustained T cell proliferation and deletion of activated cells. Peripheral tolerance to self-antigens may occur in an analogous manner. Due to the ubiquitous presence of self-antigens, impaired cell cycle regulation might lead to excessive proliferation and disruption of tolerance after repeated antigen presentation. Cell cycle inhibitors are thus essential in maintaining tolerance, and appear to act at two control points: (1) p21 negatively regulates T cell proliferation in response to self-antigens; and (2) p27 might maintain the anergic state in self-antigen-specific T cells. We propose that following repeated stimulation by self-antigens, autoreactive p21 deficient T cells hyperproliferate and provoke a disruption of tolerance. This may result in an increase in helper and memory T cells and activated B cells, as well as production of autoantibodies (Table 1). Balomenos and Martinez have also illustrated that p21 deletion results in a sex linked lupus-like syndrome in the murine model of SLE. Hence it is of interest to identify whether female hormones are directly associated to the p21 mediated disruption of tolerance or influence a specific type of immune cells or perhaps the generation of nuclear antigens. These data together suggest p21 plays a pivotal role in negatively regulating the proliferation of T cells and maintaining the tolerance toward self-antigens, and the downregulation of p21 possibly contributes to the pathogenesis of SLE. In addition, p21 deficiency may increase kidney T cell proliferation and deposition of immune complexes on the glomerular endothelium, contributing to inflammatory reactions and development of glomerulonephritis as seen in the RSLE group.

Cyclin B1, like cyclin A, is classified as a mitotic cyclin and functions exclusively during the G2/M phase. Both cyclins A and B interact with CDK1 to induce mitosis, and proteolysis of both proteins is required for completing mitosis. Cyclin B1 accumulates at the time of cell exit from S phase, reaches maximal levels when the cell enters mitosis, and breaks down during the transition to anaphase. Our results, in accord with others’ findings, confirm that cyclin B1 expression in normal PHA stimulated PBL (Figure 1) is essentially limited to cells in the late S phase and those with DNA content of G2/M phase. Our results indicate no significant difference in cyclin B1 expression between patients with SLE (RSLE or SLE) and the controls (Figure 2), suggesting that expression of the central G2/M regulator cyclin B1 is not defective in SLE lymphocytes. A similar pattern of increase in cyclin B1 expression throughout the S phase was found in lymphocytes from both patients and controls, suggesting that there is no defect in the kinetics of cyclin B1 expression in SLE lymphocytes (Figure 2). A recent study has illustrated a significantly higher level of cells in the G2/M phase and an
upregulation of cyclin B1 protein in thymocytes of lupus prone MRL-lpr/lpr mice compared with normal BALB/c mice, indicating an alteration of the cell cycle machinery in thymocytes and hence the aberrant development of T cells in these lupus prone mice33. Thus, the role of cyclin B1 in controlling the G2/M checkpoint may be related to the sustained proliferation of SLE T cells.

Although prednisolone, a synthetic glucocorticoid, has been shown to inhibit IL-2 synthesis during T cell proliferation34, no previous studies have described any positive or negative effects of prednisolone on the cell cycle regulators of T cells in SLE. Hydroxychloroquine, an antimalarial that blocks antigen presentation and lowers cytokine production, has not yet been shown to affect the expression of cell cycle inhibitors and cyclins37. In addition, no recent findings have shown the influence of azathioprine on cell cycle regulation. Thus, our future work will focus on the analysis of possible points through p21 and cyclin B in SLE is worth studying in the future. Recent genetic analyses of patients with SLE have identified several lupus susceptibility loci43,44. The p21 inhibitor genes (e.g., p21 and p27) of T lymphocytes in SLE.

REFERENCES

