Abstract
Objective In patients with fibromyalgia (FM), the brain shows altered structure and functional connectivity, but the mechanisms underlying these changes remain unclear. This study investigated the associated changes in brain microstructures and neuroinflammation of patients with FM.
Methods We recruited 14 patients with FM and 14 healthy controls. Visual analog scale (VAS), Beck's Anxiety Inventory (BAI), and Beck's Depression Inventory-II (BDI-II) were used for assessing their pain, anxiety, and depression levels, respectively. Diffusion kurtosis imaging (DKI) was used to visualize microstructural alterations associated with neuroinflammation in specific brain regions. The biomarkers for the neuron damage, including serum tau and amyloid β protein fragment 1-42 (Aβ1-42) levels, were assessed. Spearman correlation of DKI parameters with VAS, BAI, and BDI-II scores and tau and Aβ1-42 levels were assessed.
Results The patients with FM had significantly higher levels of Aβ1-42 levels compared with the controls. Compared with the controls, the patients showed significantly lower DKI parameters in the bilateral dorsal–lateral prefrontal cortex and orbital–frontal cortex. The patients showed a significant correlation between the axial kurtosis values of the amygdala and VAS scores (left: rho = -0.603, p = 0.022; right: rho = -7.04, p = 0.005).
Conclusion To the best of our knowledge, this is the first study to use DKI to examine the brain of FM patients. We noted significant DKI changes at specific areas associated with neuroinflammation in patients with FM. Our results provide valuable information on brain neuroinflammation and pathophysiological changes in patients with FM.