Skip to main content

Main menu

  • Home
  • Content
    • First Release
    • Current
    • Archives
    • Collections
    • Audiovisual Rheum
    • COVID-19 and Rheumatology
  • Resources
    • Guide for Authors
    • Submit Manuscript
    • Payment
    • Reviewers
    • Advertisers
    • Classified Ads
    • Reprints and Translations
    • Permissions
    • Meetings
    • FAQ
    • Policies
  • Subscribers
    • Subscription Information
    • Purchase Subscription
    • Your Account
    • Terms and Conditions
  • About Us
    • About Us
    • Editorial Board
    • Letter from the Editor
    • Duncan A. Gordon Award
    • Privacy/GDPR Policy
    • Accessibility
  • Contact Us
  • JRheum Supplements
  • Services

User menu

  • My Cart
  • Log In

Search

  • Advanced search
The Journal of Rheumatology
  • JRheum Supplements
  • Services
  • My Cart
  • Log In
The Journal of Rheumatology

Advanced Search

  • Home
  • Content
    • First Release
    • Current
    • Archives
    • Collections
    • Audiovisual Rheum
    • COVID-19 and Rheumatology
  • Resources
    • Guide for Authors
    • Submit Manuscript
    • Payment
    • Reviewers
    • Advertisers
    • Classified Ads
    • Reprints and Translations
    • Permissions
    • Meetings
    • FAQ
    • Policies
  • Subscribers
    • Subscription Information
    • Purchase Subscription
    • Your Account
    • Terms and Conditions
  • About Us
    • About Us
    • Editorial Board
    • Letter from the Editor
    • Duncan A. Gordon Award
    • Privacy/GDPR Policy
    • Accessibility
  • Contact Us
  • Follow jrheum on Twitter
  • Visit jrheum on Facebook
  • Follow jrheum on LinkedIn
  • Follow jrheum on YouTube
  • Follow jrheum on Instagram
  • Follow jrheum on RSS
Research ArticleArticles

Pathophysiology and Pathogenesis of Immune-Mediated Inflammatory Diseases: Commonalities and Differences

PROTON RAHMAN, ROBERT D. INMAN, HANI EL-GABALAWY and DENIS O. KRAUSE
The Journal of Rheumatology Supplement May 2010, 85 11-26; DOI: https://doi.org/10.3899/jrheum.091462
PROTON RAHMAN
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: prahman@mun.ca
ROBERT D. INMAN
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HANI EL-GABALAWY
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DENIS O. KRAUSE
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
  • eLetters
PreviousNext
Loading

REFERENCES

  1. 1.↵
    1. Anaya JM,
    2. Gómez L,
    3. Castiblanco J
    . Is there a common genetic basis for autoimmune diseases? Clin Dev Immunol 2006;13:185–95.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Silman AJ,
    2. MacGregor AJ,
    3. Thomson W,
    4. Holligan S,
    5. Carthy D,
    6. Farhan A,
    7. et al.
    Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br J Rheumatol 1993;32:903–7.
    OpenUrlAbstract/FREE Full Text
  3. 3.↵
    1. Vyse TJ,
    2. Todd JA
    . Genetic analysis of autoimmune disease. Cell 1996;85:311–8.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Zhernakova A,
    2. van Diemen CC,
    3. Wijmenga C
    . Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat Rev Genet 2009;10:43–55.
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. Brewerton DA,
    2. Hart FD,
    3. Nicholls A,
    4. Caffrey M,
    5. James DC,
    6. Sturrock RD
    . Ankylosing spondylitis and HL-A27. Lancet 1973;1:904–7.
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. Schlosstein L,
    2. Terasaki PI,
    3. Bluestone R,
    4. Pearson CM
    . High association of an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med 1973;288:704–6.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Brown MA,
    2. Pile KD,
    3. Kennedy LG,
    4. Campbell D,
    5. Andrew L,
    6. March R,
    7. et al.
    A genome-wide screen for susceptibility loci in ankylosing spondylitis. Arthritis Rheum 1998;41:588–95.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Sheehan NJ
    . The ramifications of HLA-B27. J R Soc Med 2004;97:10–4.
    OpenUrlFREE Full Text
  9. 9.↵
    1. Smith JA,
    2. Märker-Hermann E,
    3. Colbert RA
    . Pathogenesis of ankylosing spondylitis: current concepts. Best Pract Res Clin Rheumatol 2006;20:571–91.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. FitzGerald O,
    2. Winchester R
    . Psoriatic arthritis: from pathogenesis to therapy [review]. Arthritis Res Ther 2009;11:214.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. Gladman DD,
    2. Anhorn KA,
    3. Schachter RK,
    4. Mervart H
    . HLA antigens in psoriatic arthritis. J Rheumatol 1986;13:586–92.
    OpenUrlPubMed
  12. 12.↵
    1. Khan MA
    . HLA-B27 polymorphism and association with disease. J Rheumatol 2000;27:1110–4.
    OpenUrlPubMed
  13. 13.↵
    1. Cauli A,
    2. Dessole G,
    3. Fiorillo MT,
    4. Vacca A,
    5. Mameli A,
    6. Bitti P,
    7. et al.
    Increased level of HLA-B27 expression in ankylosing spondylitis patients compared with healthy HLA-B27-positive subjects: a possible further susceptibility factor for the development of disease. Rheumatology 2002;41:1375–9.
    OpenUrlAbstract/FREE Full Text
  14. 14.↵
    1. Mear JP,
    2. Schreiber KL,
    3. Munz C,
    4. Zhu X,
    5. Stevanovic S,
    6. Rammensee HG,
    7. et al.
    Misfolding of HLAB27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol 1999;163:6665–70.
    OpenUrlAbstract/FREE Full Text
  15. 15.↵
    1. Fiorillo MT,
    2. Maragno M,
    3. Butler R,
    4. Dupuis ML,
    5. Sorrentino R
    . CD8+ T-cell autoreactivity to an HLAB27-restricted self-epitope correlates with ankylosing spondylitis. J Clin Invest 2000;106:47–53.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Allen RL,
    2. O’Callaghan CA,
    3. McMichael AJ,
    4. Bowness P
    . Cutting edge: HLA-B27 can form a novel b2-microglobulin free heavy chain homodimer structure. J Immunol 1999;162:5045–8.
    OpenUrlAbstract/FREE Full Text
  17. 17.↵
    1. Ball EJ,
    2. Khan MA
    . HLA-B27 polymorphism. Joint Bone Spine 2001;68:378–82.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Sesma L,
    2. Montserrat V,
    3. Lamas J,
    4. Marina A,
    5. Vázquez J,
    6. López de Castro JA,
    7. et al.
    The peptide repertoires of HLA-B27 subtypes differentially associated to spondyloarthropathy (B*2704 and B*2706) differ by specific changes at three anchor positions. J Biol Chem 2002;277:16744–9.
    OpenUrlAbstract/FREE Full Text
  19. 19.↵
    1. Ramos M,
    2. Paradela A,
    3. Vazquez M,
    4. Marina A,
    5. Vazquez J,
    6. Lopez de Castro JA
    . Differential association of HLA-B*2705 and B*2709 to ankylosing spondylitis correlates with limited peptide subsets but not with altered cell surface stability. J Biol Chem 2002;277:28749–56.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Goodall JC,
    2. Ellis L,
    3. Hill Gaston JS
    . Spondylarthritis-associated and non spondylarthritis-associated B27 subtypes differ in their dependence upon tapasin for surface expression and their incorporation into the peptide loading complex. Arthritis Rheum 2006;54:138–47.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Dangoria NS,
    2. DeLay ML,
    3. Kingsbury DJ,
    4. Mear JP,
    5. Uchanska-Ziegler B,
    6. Ziegler A,
    7. et al.
    HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem 2002;277:23459–68.
    OpenUrlAbstract/FREE Full Text
  22. 22.↵
    1. Colbert RA,
    2. DeLay ML,
    3. Layh-Schmitt G,
    4. Sowders DP
    . HLA-B27 misfolding and spondyloarthropathies. Prion 2009;3:15–26.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Cauli A,
    2. Dessole G,
    3. Cappai L,
    4. Vacca A,
    5. Mameli A,
    6. Carcassi C,
    7. et al.
    The lack of association between HLA-B*2709 and ankylosing spondylitis is not due to a defective cellular expression of the B*2709 molecules [abstract]. Arthritis Rheum 2005;52 Suppl:S394.
    OpenUrl
  24. 24.↵
    1. Gregersen PK,
    2. Silver J,
    3. Winchester RJ
    . The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987;30:1205–13.
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. Newton JL,
    2. Harney SM,
    3. Wordsworth BP,
    4. Brown MA
    . A review of the MHC genetics of rheumatoid arthritis. Genes Immun 2004;5:151–7.
    OpenUrlCrossRefPubMed
  26. 26.↵
    1. Van der Helm-van Mil AH,
    2. Verpoort KN,
    3. Breedveld FC,
    4. Huizinga TW,
    5. Toes RE,
    6. de Vries RR
    . The HLA-DRB1 shared epitope alleles are primarily a risk factor for anti-cyclic citrullinated peptide antibodies and are not an independent risk factor for development of rheumatoid arthritis. Arthritis Rheum 2006;54:1117–21.
    OpenUrlCrossRefPubMed
  27. 27.↵
    1. Wiik AS
    . The immune response to citrullinated proteins in patients with rheumatoid arthritis: genetic, clinical, technical, and epidemiological aspects. Clin Rev Allergy Immunol 2007;32:13–22.
    OpenUrlCrossRefPubMed
  28. 28.↵
    1. Mewar D,
    2. Coote A,
    3. Moore DJ,
    4. Marinou I,
    5. Keyworth J,
    6. Dickson MC,
    7. et al.
    Independent associations of anti-cyclic citrullinated peptide antibodies and rheumatoid factor with radiographic severity of rheumatoid arthritis. Arthritis Res Ther 2006;8:R128.
    OpenUrlCrossRefPubMed
  29. 29.↵
    1. McGuirk P,
    2. McCann C,
    3. Mills KH
    . Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J Exp Med 2002;195:221–31.
    OpenUrlAbstract/FREE Full Text
  30. 30.↵
    1. Massey EJ,
    2. Sundstedt A,
    3. Day MJ,
    4. Corfield G,
    5. Anderton S,
    6. Wraith DC
    . Intranasal peptide-induced peripheral tolerance: the role of IL-10 in regulatory T cell function within the context of experimental autoimmune encephalomyelitis. Vet Immunol Immunopathol 2002;87:357–72.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Bowes J,
    2. Barton A
    . Recent advances in the genetics of RA susceptibility. Rheumatology 2008;47:399–402.
    OpenUrlAbstract/FREE Full Text
  32. 32.↵
    1. Nistor I,
    2. Nair RP,
    3. Stuart P,
    4. Hiremagalore R,
    5. Thompson RA,
    6. Jenisch S,
    7. et al.
    Protein tyrosine phosphatase gene PTPN22 polymorphism in psoriasis: lack of evidence for association. J Invest Dermatol 2005;125:395–6.
    OpenUrlPubMed
  33. 33.↵
    1. Hinks A,
    2. Barton A,
    3. John S,
    4. Bruce I,
    5. Hawkins C,
    6. Donn R,
    7. et al.
    Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: further support that PTPN22 is an autoimmunity gene. Arthritis Rheum 2005;52:1694–9.
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. Li Y,
    2. Liao W,
    3. Chang M,
    4. Schrodi SJ,
    5. Bui N,
    6. Catanese JJ,
    7. et al.
    Further genetic evidence for three psoriasis-risk genes: ADAM33, CDKAL1, and PTPN22. J Invest Dermatol 2009;129:629–34.
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. Butt C,
    2. Peddle L,
    3. Greenwood C,
    4. Hamilton S,
    5. Gladman D,
    6. Rahman P
    . Association of functional variants of PTPN22 and tp53 in psoriatic arthritis: a case-control study. Arthritis Res Ther 2006;8:R27.
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. Barrett JC,
    2. Hansoul S,
    3. Nicolae DL,
    4. Cho JH,
    5. Duerr RH,
    6. Rioux JD,
    7. et al.
    Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 2008;40:955–62.
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. Ikari K,
    2. Momohara S,
    3. Inoue E,
    4. Tomatsu T,
    5. Hara M,
    6. Yamanaka H,
    7. et al.
    Haplotype analysis revealed no association between the PTPN22 gene and RA in a Japanese population. Rheumatology 2006;45:1345–8.
    OpenUrlAbstract/FREE Full Text
  38. 38.↵
    1. Lee HS,
    2. Korman BD,
    3. Le JM,
    4. Kastner DL,
    5. Remmers EF,
    6. Gregersen PK,
    7. et al.
    Genetic risk factors for rheumatoid arthritis differ in Caucasian and Korean populations. Arthritis Rheum 2009; 60:364–71.
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. Siminovitch KA
    . PTPN22 and autoimmune disease. Nat Genet 2004;36:1248–9.
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. Gregersen PK,
    2. Olsson LM
    . Recent advances in the genetics of autoimmune disease. Annu Rev Immunol 2009;27:363–91.
    OpenUrlCrossRefPubMed
  41. 41.↵
    1. Inohara N,
    2. Ogura Y,
    3. Fontalba A,
    4. Gutierrez O,
    5. Pons F,
    6. Crespo J,
    7. et al.
    Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 2003;278:5509–12.
    OpenUrlAbstract/FREE Full Text
  42. 42.↵
    1. Girardin SE,
    2. Boneca IG,
    3. Viala J,
    4. Chamaillard M,
    5. Labigne A,
    6. Thomas G,
    7. et al.
    Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003;278:8869–72.
    OpenUrlAbstract/FREE Full Text
  43. 43.↵
    1. Vignal C,
    2. Singer E,
    3. Peyrin-Biroulet L,
    4. Desreumaux P,
    5. Chamaillard M
    . How NOD2 mutations predispose to Crohn’s disease? Microbes Infect 2007;9:658–63.
    OpenUrlCrossRefPubMed
  44. 44.↵
    1. Li J,
    2. Moran T,
    3. Swanson E,
    4. Julian C,
    5. Harris J,
    6. Bonen DK,
    7. et al.
    Regulation of IL-8 and IL-1 beta expression in Crohn’s disease associated NOD2/CARD15 mutations. Hum Mol Genet 2004;13:1715–25.
    OpenUrlAbstract/FREE Full Text
  45. 45.↵
    1. Cho JH,
    2. Abraham C
    . Inflammatory bowel disease genetics: Nod2. Annu Rev Med 2007;58:401–16.
    OpenUrlCrossRefPubMed
  46. 46.↵
    1. Hugot JP,
    2. Zaccaria I,
    3. Cavanaugh J,
    4. Yang H,
    5. Vermeire S,
    6. Lappalainen M,
    7. et al.
    Prevalence of CARD15/NOD2 mutations in Caucasian healthy people. Am J Gastroenterol 2007;102:1259–67.
    OpenUrlCrossRefPubMed
  47. 47.↵
    1. Levy DE,
    2. Darnell JE Jr
    . Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002;3:651–62.
    OpenUrlCrossRefPubMed
  48. 48.↵
    1. Lee HS,
    2. Remmers EF,
    3. Le JM,
    4. Kastner DL,
    5. Bae SC,
    6. Gregersen PK
    . Association of STAT4 with rheumatoid arthritis in the Korean population. Mol Med 2007;13:455–60.
    OpenUrlPubMed
  49. 49.↵
    1. Kobayashi S,
    2. Ikari K,
    3. Kaneko H,
    4. Kochi Y,
    5. Yamamoto K,
    6. Shimane K,
    7. et al.
    Association of STAT4 with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in the Japanese population. Arthritis Rheum 2008;58:1940–6.
    OpenUrlCrossRefPubMed
  50. 50.↵
    1. Jacobson NG,
    2. Szabo SJ,
    3. Weber-Nordt RM,
    4. Zhong Z,
    5. Schreiber RD,
    6. Darnell JE Jr,
    7. et al.
    Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J Exp Med 1995;181:1755–62.
    OpenUrlAbstract/FREE Full Text
  51. 51.↵
    1. Watford WT,
    2. Hissong BD,
    3. Bream JH,
    4. Kanno Y,
    5. Muul L,
    6. O’Shea JJ
    . Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev 2004;202:139–56.
    OpenUrlCrossRefPubMed
  52. 52.↵
    1. Hildner KM,
    2. Schirmacher P,
    3. Atreya I,
    4. Dittmayer M,
    5. Bartsch B,
    6. Galle PR,
    7. et al.
    Targeting of the transcription factor STAT4 by antisense phosphorothioate oligonucleotides suppresses collagen-induced arthritis. J Immunol 2007;178:3427–36.
    OpenUrlAbstract/FREE Full Text
  53. 53.↵
    1. Walker JG,
    2. Ahern MJ,
    3. Coleman M,
    4. Weedon H,
    5. Papangelis V,
    6. Beroukas D,
    7. et al.
    Expression of Jak3, STAT1, STAT4, and STAT6 in inflammatory arthritis: unique Jak3 and STAT4 expression in dendritic cells in seropositive rheumatoid arthritis. Ann Rheum Dis 2006;65:149–56.
    OpenUrlAbstract/FREE Full Text
  54. 54.↵
    1. Walker JG,
    2. Ahern MJ,
    3. Coleman M,
    4. Weedon H,
    5. Papangelis V,
    6. Beroukas D,
    7. et al.
    Changes in synovial tissue Jak-STAT expression in rheumatoid arthritis in response to successful DMARD treatment. Ann Rheum Dis 2006;65:1558–64.
    OpenUrlAbstract/FREE Full Text
  55. 55.↵
    1. Parham C,
    2. Chirica M,
    3. Timans J,
    4. Vaisberg E,
    5. Travis M,
    6. Cheung J,
    7. et al.
    A receptor for the heterodimeric cytokine IL-23 is composed of IL-12R beta 1 and a novel cytokine receptor subunit, IL-23R. J Immunol 2002;168:5699–708.
    OpenUrlAbstract/FREE Full Text
  56. 56.↵
    1. Mathur AN,
    2. Chang HC,
    3. Zisoulis DG,
    4. Stritesky GL,
    5. Yu Q,
    6. O’Malley JT,
    7. et al.
    Stat3 and Stat4 direct development of IL-17-secreting Th cells. J Immunol 2007;178:4901–7.
    OpenUrlAbstract/FREE Full Text
  57. 57.↵
    1. Wong BR,
    2. Grossbard EB,
    3. Payan DG,
    4. Masuda ES
    . Targeting Syk as a treatment for allergic and autoimmune disorders. Exp Opin Invest Drugs 2004;13:743–62.
    OpenUrl
  58. 58.↵
    1. Takada Y,
    2. Aggarwal BB
    . TNF activates Syk protein tyrosine kinase leading to TNF-induced MAPK activation, NF-κB activation and apoptosis. J Immunol 2004;173:1066–77.
    OpenUrlAbstract/FREE Full Text
  59. 59.↵
    1. Cha HS,
    2. Boyle DL,
    3. Inoue T,
    4. Schoot R,
    5. Tak PP,
    6. Pine P,
    7. et al.
    A novel spleen tyrosine kinase inhibitor blocks c-Jun N-terminal kinase-mediated gene expression in synoviocytes. J Pharmacol Exp Ther 2006;317:571–8.
    OpenUrlAbstract/FREE Full Text
  60. 60.↵
    1. Weinblatt ME,
    2. Kavanaugh A,
    3. Burgos-Vargas R,
    4. Dikranian AH,
    5. Medrano-Ramirez G,
    6. Morales-Torres JL,
    7. et al.
    Treatment of rheumatoid arthritis with a Syk kinase inhibitor: a twelve-week, randomized, placebo-controlled trial. Arthritis Rheum 2008;58:3309–18.
    OpenUrlCrossRefPubMed
  61. 61.↵
    1. Kastelein RA,
    2. Hunter CA,
    3. Cua DJ
    . Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 2007;25:221–42.
    OpenUrlCrossRefPubMed
  62. 62.↵
    1. Boniface K,
    2. Blom B,
    3. Liu YJ,
    4. de Waal Malefyt R
    . From interleukin-23 to T-helper 17 cells: human T-helper cell differentiation revisited. Immunol Rev 2008;226:132–46.
    OpenUrlCrossRefPubMed
  63. 63.↵
    1. Lowes MA,
    2. Kikuchi T,
    3. Fuentes-Duculan J,
    4. Cardinale I,
    5. Zaba LC,
    6. Haider AS,
    7. et al.
    Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol 2008;128:1207–11.
    OpenUrlCrossRefPubMed
  64. 64.↵
    1. Koga C,
    2. Kabashima K,
    3. Shiraishi N,
    4. Kobayashi M,
    5. Tokura Y
    . Possible pathogenic role of Th17 cells for atopic dermatitis. J Invest Dermatol 2008;128:2625–30.
    OpenUrlCrossRefPubMed
  65. 65.↵
    1. Arican O,
    2. Aral M,
    3. Sasmaz S,
    4. Ciragil P
    . Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm 2005;2005:273–9.
    OpenUrlCrossRefPubMed
  66. 66.↵
    1. Fuss IJ,
    2. Becker C,
    3. Yang Z,
    4. Groden C,
    5. Hornung RL,
    6. Heller F,
    7. et al.
    Both IL-12p70 and IL-23 are synthesized during active Crohn’s disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis 2006;12:9–15.
    OpenUrlCrossRefPubMed
  67. 67.↵
    1. Schmidt C,
    2. Giese T,
    3. Ludwig B,
    4. Mueller-Molaian I,
    5. Marth T,
    6. Zeuzem S,
    7. et al.
    Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease: elevated interleukin-23p19 and interleukin-27p28 in Crohn’s disease but not in ulcerative colitis. Inflamm Bowel Dis 2005;11:16–23.
    OpenUrlCrossRefPubMed
  68. 68.↵
    1. Duerr RH,
    2. Taylor KD,
    3. Brant SR,
    4. Rioux JD,
    5. Silverberg MS,
    6. Daly MJ,
    7. et al.
    A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006;314:1461–3.
    OpenUrlAbstract/FREE Full Text
  69. 69.↵
    1. Rioux JD,
    2. Xavier RJ,
    3. Taylor KD,
    4. Silverberg MS,
    5. Goyette P,
    6. Huett A,
    7. et al.
    Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 2007;39:596–604.
    OpenUrlCrossRefPubMed
  70. 70.↵
    1. Schmechel S,
    2. Konrad A,
    3. Diegelmann J,
    4. Glas J,
    5. Wetzke M,
    6. Paschos E,
    7. et al.
    Linking genetic susceptibility to Crohn’s disease with Th17 cell function: IL-22 serum levels are increased in Crohn’s disease and correlate with disease activity and IL23R genotype status. Inflamm Bowel Dis 2008;14:204–12.
    OpenUrlCrossRefPubMed
  71. 71.↵
    1. Melis L,
    2. Vandooren B,
    3. Kruithof E,
    4. Jacques P,
    5. De Vos M,
    6. Mielants H,
    7. et al.
    Systemic levels of IL-23 are strongly associated with disease activity in rheumatoid arthritis but not spondyloarthritis. Ann Rheum Dis 2009 Feb 5. [Epub ahead of print]
  72. 72.↵
    1. Rahman P,
    2. Inman RD,
    3. Maksymowych WP,
    4. Reeve JP,
    5. Peddle L,
    6. Gladman DD
    . Association of interleukin 23 receptor variants with psoriatic arthritis. J Rheumatol 2009;36:137–40.
    OpenUrlAbstract/FREE Full Text
  73. 73.↵
    1. Papp KA,
    2. Langley RG,
    3. Lebwohl M,
    4. Krueger GG,
    5. Szapary P,
    6. Yeilding N,
    7. et al.
    Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 2008;371:1675–84.
    OpenUrlCrossRefPubMed
  74. 74.↵
    1. Leonardi CL,
    2. Kimball AB,
    3. Papp KA,
    4. Yeilding N,
    5. Guzzo C,
    6. Wang Y,
    7. et al.
    Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 2008;371:1665–74.
    OpenUrlCrossRefPubMed
  75. 75.↵
    1. Sandborn WJ,
    2. Feagan BG,
    3. Fedorak RN,
    4. Scherl E,
    5. Fleisher MR,
    6. Katz S,
    7. et al.,
    8. Ustekinumab Crohn’s Disease Study Group
    . A randomized trial of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate to severe Crohn’s disease. Gastroenterology 2008;135:1130–41.
    OpenUrlCrossRefPubMed
  76. 76.↵
    1. Mannon PJ,
    2. Fuss IJ,
    3. Mayer L,
    4. Elson CO,
    5. Sandborn WJ,
    6. Present D,
    7. et al.
    Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med 2004;351:2069–79.
    OpenUrlCrossRefPubMed
  77. 77.↵
    1. Burakoff R,
    2. Barish CF,
    3. Riff D,
    4. Pruitt R,
    5. Chey WY,
    6. Farraye FA,
    7. et al.
    A phase 1/2A trial of STA 5326, an oral interleukin-12/23 inhibitor, in patients with active moderate to severe Crohn’s disease. Inflamm Bowel Dis 2006;12:558–65.
    OpenUrlCrossRefPubMed
  78. 78.↵
    1. Silman AJ,
    2. Newman J,
    3. MacGregor AJ
    . Cigarette smoking increases the risk of rheumatoid arthritis: results from a nationwide study of disease-discordant twins. Arthritis Rheum 1996;39:732–5.
    OpenUrlCrossRefPubMed
  79. 79.↵
    1. Karlson EW,
    2. Lee IM,
    3. Cook NR,
    4. Manson JE,
    5. Buring JE,
    6. Hennekens CH
    . A retrospective cohort study of cigarette smoking and risk of rheumatoid arthritis in female health professionals. Arthritis Rheum 1999;42:910–7.
    OpenUrlCrossRefPubMed
  80. 80.↵
    1. Stolt P,
    2. Bengtsson C,
    3. Nordmark B,
    4. Lindblad S,
    5. Lundberg I,
    6. Klareskog L,
    7. et al.,
    8. EIRA Study Group
    . Quantification of the influence of cigarette smoking on rheumatoid arthritis: results from a population based case-control study, using incident cases. Ann Rheum Dis 2003;62:835–41.
    OpenUrlAbstract/FREE Full Text
  81. 81.↵
    1. Stolt P,
    2. Källberg H,
    3. Lundberg I,
    4. Sjögren B,
    5. Klareskog L,
    6. Alfredsson L,
    7. EIRA Study Group
    . Silica exposure is associated with increased risk of developing rheumatoid arthritis: results from the Swedish EIRA study. Ann Rheum Dis 2005;64:582–6.
    OpenUrlAbstract/FREE Full Text
  82. 82.↵
    1. Sverdrup B,
    2. Källberg H,
    3. Bengtsson C,
    4. Lundberg I,
    5. Padyukov L,
    6. Alfredsson L,
    7. et al.,
    8. Epidemiological Investigation of Rheumatoid Arthritis Study Group
    . Association between occupational exposure to mineral oil and rheumatoid arthritis: results from the Swedish EIRA case-control study. Arthritis Res Ther 2005,7:R1296–R1303.
    OpenUrlCrossRefPubMed
  83. 83.↵
    1. Padyukov L,
    2. Silva C,
    3. Stolt P,
    4. Alfredsson L,
    5. Klareskog L
    . A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum 2004;50:3085–92.
    OpenUrlCrossRefPubMed
  84. 84.↵
    1. Liu G-Y,
    2. Liao Y-F,
    3. Chang W-H,
    4. Liu CC,
    5. Hsieh MC,
    6. Hsu PC,
    7. et al.
    Overexpression of peptidylarginine deiminase IV features in apoptosis of haematopoietic cells. Apoptosis 2006;11:183–96.
    OpenUrlCrossRefPubMed
  85. 85.↵
    1. Klareskog L,
    2. Padyukov L,
    3. Rönnelid J,
    4. Alfredsson L
    . Genes, environment and immunity in the development of rheumatoid arthritis. Curr Opin Immunol 2006;18:650–5.
    OpenUrlCrossRefPubMed
  86. 86.↵
    1. Ahmed FE
    . Role of genes, the environment and their interactions in the etiology of inflammatory bowel diseases. Exp Rev Mol Diagn 2006;6:345–63.
    OpenUrlCrossRefPubMed
  87. 87.↵
    1. Hanauer SB
    . Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 2006;12:S3–S9.
    OpenUrlPubMed
  88. 88.↵
    1. Rath HC
    . The role of endogenous bacterial flora: bystander or the necessary prerequisite? Eur J Gastroenterol Hepatol 2003; 15:615–20.
    OpenUrlCrossRefPubMed
  89. 89.↵
    1. Schmidt C,
    2. Stallmach A
    . Etiology and pathogenesis of inflammatory bowel disease. Minerva Gastroenterol Dietol 2005;51:127–45.
    OpenUrlPubMed
  90. 90.↵
    1. Barnich N,
    2. Carvalho FA,
    3. Glasser AL,
    4. Darcha C,
    5. Jantscheff P,
    6. Allez M,
    7. et al.
    CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest 2007;117:1566–74.
    OpenUrlCrossRefPubMed
  91. 91.↵
    1. Glasser AL,
    2. Boudeau J,
    3. Barnich N,
    4. Perruchot MH,
    5. Colombel JF,
    6. Darfeuille-Michaud A
    . Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect Immun 2001;69:5529–37.
    OpenUrlAbstract/FREE Full Text
  92. 92.↵
    1. Abraham C,
    2. Cho JH
    . Bugging of the intestinal mucosa. N Engl J Med 2007;357:708–10.
    OpenUrlCrossRefPubMed
  93. 93.↵
    1. Hampe J,
    2. Franke A,
    3. Rosenstiel P,
    4. Till A,
    5. Teuber M,
    6. Huse K,
    7. et al.
    A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007;39:207–11.
    OpenUrlCrossRefPubMed
  94. 94.↵
    1. Parkes M,
    2. Barrett JC,
    3. Prescott NJ,
    4. Tremelling M,
    5. Anderson CA,
    6. Fisher SA,
    7. et al.
    Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 2007;39:830–2.
    OpenUrlCrossRefPubMed
  95. 95.↵
    1. Somerville KW,
    2. Logan RF,
    3. Edmond M,
    4. Langman MJ
    . Smoking and Crohn’s disease. Br Med J (Clin Res Ed) 1984;289:954–6.
    OpenUrlAbstract/FREE Full Text
  96. 96.↵
    1. Bernstein CN,
    2. Rawsthorne P,
    3. Cheang M,
    4. Blanchard JF
    . A population-based case control study of potential risk factors for IBD. Am J Gastroenterol 2006;101:993–1002.
    OpenUrlCrossRefPubMed
  97. 97.↵
    1. Mahid SS,
    2. Minor KS,
    3. Soto RE,
    4. Hornung CA,
    5. Galandiuk S
    . Smoking and inflammatory bowel disease: a meta-analysis. Mayo Clin Proc 2006;81:1462–71.
    OpenUrlCrossRefPubMed
  98. 98.↵
    1. Aldhous MC,
    2. Drummond HE,
    3. Anderson N,
    4. Smith LA,
    5. Arnott ID,
    6. Satsangi J
    . Does cigarette smoking influence the phenotype of Crohn’s disease? Analysis using the Montreal classification. Am J Gastroenterol 2007;102:577–88.
    OpenUrlCrossRefPubMed
  99. 99.↵
    1. Sieper J,
    2. Braun J,
    3. Kingsley GH
    . Report on the fourth international workshop on reactive arthritis. Arthritis Rheum 2000;43:720–34.
    OpenUrlCrossRefPubMed
  100. 100.↵
    1. Granfors K,
    2. Jalkanen S,
    3. von Essen R,
    4. Lahesmaa-Rantala R,
    5. Isomäki O,
    6. Pekkola-Heino K,
    7. et al.
    Yersinia antigens in synovial-fluid cells from patients with reactive arthritis. N Engl J Med 1989;320:216–21.
    OpenUrlCrossRefPubMed
  101. 101.↵
    1. Leirisalo-Repo M,
    2. Helenius P,
    3. Hannu T,
    4. Lehtinen A,
    5. Kreula J,
    6. Taavitsainen M,
    7. et al.
    Long-term prognosis of reactive salmonella arthritis. Ann Rheum Dis 1997;56:516–20.
    OpenUrlAbstract/FREE Full Text
  102. 102.↵
    1. Naldi L,
    2. Chatenoud L,
    3. Linder D,
    4. Belloni Fortina A,
    5. Peserico A,
    6. Virgili AR,
    7. et al.
    Cigarette smoking, body mass index, and stressful life events as risk factors for psoriasis: results from an Italian case-control study. J Invest Dermatol 2005;125:61–7.
    OpenUrlCrossRefPubMed
  103. 103.↵
    1. Wolk K,
    2. Mallbris L,
    3. Larsson P,
    4. Rosenblad A,
    5. Vingård E,
    6. Ståhle M
    . Excessive body weight and smoking associates with a high risk of onset of plaque psoriasis. Acta Derm Venereol 2009;89:492–7.
    OpenUrlCrossRefPubMed
  104. 104.↵
    1. Hart AL,
    2. Al-Hassi HO,
    3. Rigby RJ,
    4. Bell SJ,
    5. Emmanuel AV,
    6. Knight SC,
    7. et al.
    Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology 2005;129:50–65.
    OpenUrlCrossRefPubMed
  105. 105.↵
    1. Uhlig HH,
    2. McKenzie BS,
    3. Hue S,
    4. Thompson C,
    5. Joyce-Shaikh B,
    6. Stepankova R,
    7. et al.
    Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 2006;25:309–18.
    OpenUrlCrossRefPubMed
  106. 106.↵
    1. Nestle FO,
    2. Conrad C,
    3. Tun-Kyi A,
    4. Homey B,
    5. Gombert M,
    6. Boyman O,
    7. et al.
    Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med 2005;202:135–43.
    OpenUrlAbstract/FREE Full Text
  107. 107.↵
    1. Farkas L,
    2. Beiske K,
    3. Lund-Johansen F,
    4. Brandtzaeg P,
    5. Jahnsen FL
    . Plasmacytoid dendritic cells (natural interferon-alpha/beta-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am J Pathol 2001;159:237–43.
    OpenUrlCrossRefPubMed
  108. 108.↵
    1. Van Krinks CH,
    2. Matyszak MK,
    3. Gaston JS
    . Characterization of plasmacytoid dendritic cells in inflammatory arthritis synovial fluid. Rheumatology 2004;43:453–60.
    OpenUrlAbstract/FREE Full Text
  109. 109.↵
    1. Firestein GS
    . Evolving concepts of rheumatoid arthritis [review]. Nature 2003;423:356–61.
    OpenUrlCrossRefPubMed
  110. 110.↵
    1. Huber LC,
    2. Distler O,
    3. Tarner I,
    4. Gay RE,
    5. Gay S,
    6. Pap T
    . Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology 2006;45:669–75.
    OpenUrlAbstract/FREE Full Text
  111. 111.↵
    1. Kruithof E,
    2. Baeten D,
    3. De Rycke L,
    4. Vandooren B,
    5. Foell D,
    6. Roth J,
    7. et al.
    Synovial histopathology of psoriatic arthritis, both oligo- and polyarticular, resembles spondyloarthropathy more than it does rheumatoid arthritis. Arthritis Res Ther 2005;7:R569–R580.
    OpenUrlCrossRefPubMed
  112. 112.↵
    1. Ritchlin CT,
    2. Haas-Smith SA,
    3. Li P,
    4. Hicks DG,
    5. Schwarz EM
    . Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest 2003;111:821–31.
    OpenUrlCrossRefPubMed
  113. 113.↵
    1. Kane D,
    2. Stafford L,
    3. Bresnihan B,
    4. FitzGerald O
    . A prospective, clinical and radiological study of early psoriatic arthritis: an early synovitis clinic experience. Rheumatology 2003;42:1460–8.
    OpenUrlAbstract/FREE Full Text
  114. 114.↵
    1. Welsing PM,
    2. van Gestel AM,
    3. Swinkels HL,
    4. Kiemeney LA,
    5. van Riel PL
    . The relationship between disease activity, joint destruction, and functional capacity over the course of rheumatoid arthritis. Arthritis Rheum 2001;44:2009–17.
    OpenUrlCrossRefPubMed
  115. 115.↵
    1. Dass S,
    2. Vital EM,
    3. Emery P
    . Development of psoriasis after B cell depletion with rituximab. Arthritis Rheum 2007;56:2715–8.
    OpenUrlCrossRefPubMed
  116. 116.↵
    1. Viguier M,
    2. Richette P,
    3. Aubin F,
    4. Beylot-Barry M,
    5. Lahfa M,
    6. Bedane C,
    7. et al.
    Onset of psoriatic arthritis in patients treated with efalizumab for moderate to severe psoriasis. Arthritis Rheum 2008;58:1796–802.
    OpenUrlCrossRefPubMed
  117. 117.↵
    1. Bardos T,
    2. Szabo Z,
    3. Czipri M,
    4. Vermes C,
    5. Tunyogi-Csapó M,
    6. Urban RM,
    7. et al.
    A longitudinal study on an autoimmune murine model of ankylosing spondylitis. Ann Rheum Dis 2005;64:981–7.
    OpenUrlAbstract/FREE Full Text
  118. 118.↵
    1. Braun J,
    2. Bollow M,
    3. Neure L,
    4. Seipelt E,
    5. Seyrekbasan F,
    6. Herbst H,
    7. et al.
    Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum 1995; 38:499–505.
    OpenUrlCrossRefPubMed
  119. 119.↵
    1. Bollow M,
    2. Fischer T,
    3. Reisshauer H,
    4. Backhaus M,
    5. Sieper J,
    6. Hamm B,
    7. et al.
    Quantitative analysis of sacroiliac biopsies in spondyloarthropathies: T cells and macrophages predominate in early and active sacroiliitis: cellularity correlates with the degree of enhancement detected by magnetic resonance imaging. Ann Rheum Dis 2000;59:135–40.
    OpenUrlAbstract/FREE Full Text
  120. 120.↵
    1. Diarra D,
    2. Stolina M,
    3. Polzer K,
    4. Zwerina J,
    5. Ominsky MS,
    6. Dwyer D,
    7. et al.
    Dickkopf-1 is a master regulator of joint remodeling. Nat Med 2007;13:156–63.
    OpenUrlCrossRefPubMed
  121. 121.↵
    1. Francois RJ,
    2. Gardner DL,
    3. Degrave EJ,
    4. Bywaters EG
    . Histopathologic evidence that sacroiliitis in ankylosing spondylitis is not merely enthesitis: systematic study of specimens from patients and control subjects. Arthritis Rheum 2000;43:2011–24.
    OpenUrlCrossRefPubMed
  122. 122.↵
    1. Maksymowych WP
    . Ankylosing spondylitis: at the interface of bone and cartilage. J Rheumatol 2000;27:2295–301.
    OpenUrlPubMed
  123. 123.↵
    1. Braun J,
    2. Khan MA,
    3. Sieper J
    . Enthesitis and ankylosis in spondyloarthropathy: What is the target of the immune response? Ann Rheum Dis 2000;59:985–94.
    OpenUrlFREE Full Text
  124. 124.↵
    1. Uderhardt S,
    2. Diarra D,
    3. Katzenbeisser J,
    4. David JP,
    5. Zwerina J,
    6. Richards WG,
    7. et al.
    Blockade of Dickkopf-1 induces fusion of sacroiliac joints. Ann Rheum Dis 2009; Mar 26. [Epub ahead of print]
  125. 125.↵
    1. Sivakumar B,
    2. Akhavani MA,
    3. Winlove CP,
    4. Taylor PC,
    5. Paleolog EM,
    6. Kang N
    . Synovial hypoxia as a cause of tendon rupture in rheumatoid arthritis. J Hand Surg Am 2008;33:49–58.
    OpenUrlCrossRefPubMed
  126. 126.↵
    1. Semenza GL
    . HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 2001;107:1–3.
    OpenUrlCrossRefPubMed
  127. 127.↵
    1. Gaber T,
    2. Dziurla R,
    3. Tripmacher R,
    4. Burmester GR,
    5. Buttgereit F
    . Hypoxia inducible factor (HIF) in rheumatology: low O2! See what HIF can do! Ann Rheum Dis 2005;64:971–80.
    OpenUrlAbstract/FREE Full Text
  128. 128.↵
    1. Fava RA,
    2. Olsen NJ,
    3. Spencer-Green G,
    4. Yeo KT,
    5. Yeo TK,
    6. Berse B,
    7. et al.
    Vascular permeability factor/endothelial growth factor (VPF/VEGF): accumulation and expression in human synovial fluids and rheumatoid synovial tissue. J Exp Med 1994;180:341–6.
    OpenUrlAbstract/FREE Full Text
  129. 129.↵
    1. Nagashima M,
    2. Yoshino S,
    3. Ishiwata T,
    4. Asano G
    . Role of vascular endothelial growth factor in angiogenesis of rheumatoid arthritis. J Rheumatol 1995;22:1624–30.
    OpenUrlPubMed
  130. 130.↵
    1. Jain A,
    2. Kiriakidis S,
    3. Brennan F,
    4. Sandison A,
    5. Paleolog E,
    6. Nanchahal J
    . Targeting rheumatoid tenosynovial angiogenesis with cytokine inhibitors. Clin Orthop Relat Res 2006;446:268–77.
    OpenUrlCrossRefPubMed
  131. 131.↵
    1. Berse B,
    2. Hunt JA,
    3. Diegel RJ,
    4. Morganelli P,
    5. Yeo K,
    6. Brown F,
    7. et al.
    Hypoxia augments cytokine (transforming growth factor-beta (TGF-beta) and IL-1)-induced vascular endothelial growth factor secretion by human synovial fibroblasts. Clin Exp Immunol 1999;115:176–82.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

The Journal of Rheumatology Supplement
Vol. 85
1 May 2010
  • Table of Contents
  • Table of Contents (PDF)
  • Index by Author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Rheumatology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Pathophysiology and Pathogenesis of Immune-Mediated Inflammatory Diseases: Commonalities and Differences
(Your Name) has forwarded a page to you from The Journal of Rheumatology
(Your Name) thought you would like to see this page from the The Journal of Rheumatology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Pathophysiology and Pathogenesis of Immune-Mediated Inflammatory Diseases: Commonalities and Differences
PROTON RAHMAN, ROBERT D. INMAN, HANI EL-GABALAWY, DENIS O. KRAUSE
The Journal of Rheumatology Supplement May 2010, 85 11-26; DOI: 10.3899/jrheum.091462

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

 Request Permissions

Share
Pathophysiology and Pathogenesis of Immune-Mediated Inflammatory Diseases: Commonalities and Differences
PROTON RAHMAN, ROBERT D. INMAN, HANI EL-GABALAWY, DENIS O. KRAUSE
The Journal of Rheumatology Supplement May 2010, 85 11-26; DOI: 10.3899/jrheum.091462
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • PATHOGENESIS OF IMID
    • ROLE OF MAJOR HISTOCOMPATIBILITY COMPLEX AND HLA
    • T CELL DIFFERENTIATION AND SIGNALING
    • GENES AND THE ENVIRONMENT IN DEVELOPMENT OF IMID
    • CONCLUSION
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
  • eLetters

Related Articles

Cited By...

More in this TOC Section

  • Paracetamol for the Management of Pain in Inflammatory Arthritis: A Systematic Literature Review
  • The Role of Corticosteroids for Pain Relief in Persistent Pain of Inflammatory Arthritis: A Systematic Literature Review
  • Safety of Nonsteroidal Antiinflammatory Drugs and/or Paracetamol in People Receiving Methotrexate for Inflammatory Arthritis: A Cochrane Systematic Review
Show more Articles

Similar Articles

Content

  • First Release
  • Current
  • Archives
  • Collections
  • Audiovisual Rheum
  • COVID-19 and Rheumatology

Resources

  • Guide for Authors
  • Submit Manuscript
  • Author Payment
  • Reviewers
  • Advertisers
  • Classified Ads
  • Reprints and Translations
  • Permissions
  • Meetings
  • FAQ
  • Policies

Subscribers

  • Subscription Information
  • Purchase Subscription
  • Your Account
  • Terms and Conditions

More

  • About Us
  • Contact Us
  • My Alerts
  • My Folders
  • Privacy/GDPR Policy
  • RSS Feeds
The Journal of Rheumatology
The content of this site is intended for health care professionals.
Copyright © 2022 by The Journal of Rheumatology Publishing Co. Ltd.
Print ISSN: 0315-162X; Online ISSN: 1499-2752
Powered by HighWire