Skip to main content

Main menu

  • Home
  • Content
    • First Release
    • Current
    • Archives
    • Collections
    • Audiovisual Rheum
    • COVID-19 and Rheumatology
  • Resources
    • Guide for Authors
    • Submit Manuscript
    • Payment
    • Reviewers
    • Advertisers
    • Classified Ads
    • Reprints and Translations
    • Permissions
    • Meetings
    • FAQ
    • Policies
  • Subscribers
    • Subscription Information
    • Purchase Subscription
    • Your Account
    • Terms and Conditions
  • About Us
    • About Us
    • Editorial Board
    • Letter from the Editor
    • Duncan A. Gordon Award
    • Privacy/GDPR Policy
    • Accessibility
  • Contact Us
  • JRheum Supplements
  • Services

User menu

  • My Cart
  • Log In

Search

  • Advanced search
The Journal of Rheumatology
  • JRheum Supplements
  • Services
  • My Cart
  • Log In
The Journal of Rheumatology

Advanced Search

  • Home
  • Content
    • First Release
    • Current
    • Archives
    • Collections
    • Audiovisual Rheum
    • COVID-19 and Rheumatology
  • Resources
    • Guide for Authors
    • Submit Manuscript
    • Payment
    • Reviewers
    • Advertisers
    • Classified Ads
    • Reprints and Translations
    • Permissions
    • Meetings
    • FAQ
    • Policies
  • Subscribers
    • Subscription Information
    • Purchase Subscription
    • Your Account
    • Terms and Conditions
  • About Us
    • About Us
    • Editorial Board
    • Letter from the Editor
    • Duncan A. Gordon Award
    • Privacy/GDPR Policy
    • Accessibility
  • Contact Us
  • Follow jrheum on Twitter
  • Visit jrheum on Facebook
  • Follow jrheum on LinkedIn
  • Follow jrheum on YouTube
  • Follow jrheum on Instagram
  • Follow jrheum on RSS
Research ArticleRheumatoid Arthritis

Autoantibodies Against Unmodified and Citrullinated Human Endogenous Retrovirus K Envelope Protein in Patients With Rheumatoid Arthritis

Xiaoxing Wang, Amanda Hefton, Kathryn Ni, Kennedy C. Ukadike, Michael A. Bowen, Mary Eckert, Anne Stevens, Christian Lood and Tomas Mustelin
The Journal of Rheumatology January 2022, 49 (1) 26-35; DOI: https://doi.org/10.3899/jrheum.201492
Xiaoxing Wang
1X. Wang, PhD, A. Hefton, K. Ni, BS, K.C. Ukadike, MD, Acting Instructor, C. Lood, PhD, Associate Professor, T. Mustelin, MD, PhD, Professor, Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amanda Hefton
1X. Wang, PhD, A. Hefton, K. Ni, BS, K.C. Ukadike, MD, Acting Instructor, C. Lood, PhD, Associate Professor, T. Mustelin, MD, PhD, Professor, Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kathryn Ni
1X. Wang, PhD, A. Hefton, K. Ni, BS, K.C. Ukadike, MD, Acting Instructor, C. Lood, PhD, Associate Professor, T. Mustelin, MD, PhD, Professor, Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kennedy C. Ukadike
1X. Wang, PhD, A. Hefton, K. Ni, BS, K.C. Ukadike, MD, Acting Instructor, C. Lood, PhD, Associate Professor, T. Mustelin, MD, PhD, Professor, Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael A. Bowen
2M.A. Bowen, PhD, Product and Process Development, Allogene Therapeutics, San Francisco, California;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mary Eckert
3M. Eckert, BS, Seattle Children’s Research Institute, Seattle, Washington;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anne Stevens
4A. Stevens, MD, Professor, Seattle Children’s Research Institute, Seattle, Division of Rheumatology, Department of Pediatrics, University of Washington, Seattle, Washington, and Janssen Research & Development, LLC, Wayne, Pennsylvania, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christian Lood
1X. Wang, PhD, A. Hefton, K. Ni, BS, K.C. Ukadike, MD, Acting Instructor, C. Lood, PhD, Associate Professor, T. Mustelin, MD, PhD, Professor, Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christian Lood
Tomas Mustelin
1X. Wang, PhD, A. Hefton, K. Ni, BS, K.C. Ukadike, MD, Acting Instructor, C. Lood, PhD, Associate Professor, T. Mustelin, MD, PhD, Professor, Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Tomas Mustelin
  • For correspondence: tomas2@uw.edu
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
  • eLetters
PreviousNext
Loading

REFERENCES

  1. 1.↵
    1. Talal N,
    2. Dauphinee MJ,
    3. Dang H,
    4. Alexander SS,
    5. Hart DJ,
    6. Garry RF.
    Detection of serum antibodies to retroviral proteins in patients with primary Sjögren’s syndrome (autoimmune exocrinopathy). Arthritis Rheum 1990;33:774-81.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Fraziano M,
    2. Montesano C,
    3. Lombardi VR, et al.
    Epitope specificity of anti-HIV antibodies in human and murine autoimmune diseases. AIDS Res Hum Retroviruses 1996;12:491-6.
    OpenUrlPubMed
  3. 3.↵
    1. Dang H,
    2. Dauphinee MJ,
    3. Talal N, et al.
    Serum antibody to retroviral gag proteins in systemic sclerosis. Arthritis Rheum 1991;34:1336-7.
    OpenUrlPubMed
  4. 4.↵
    1. Talal N,
    2. Garry RF,
    3. Schur PH, et al.
    A conserved idiotype and antibodies to retroviral proteins in systemic lupus erythematosus. J Clin Invest 1990;85:1866-71.
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. Nelson PN,
    2. Lever AM,
    3. Smith S, et al.
    Molecular investigations implicate human endogenous retroviruses as mediators of anti-retroviral antibodies in autoimmune rheumatic disease. Immunol Invest 1999;28:277-89.
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. Garcia-Montojo M,
    2. Doucet-O’Hare T,
    3. Henderson L,
    4. Nath A.
    Human endogenous retrovirus-K (HML-2): a comprehensive review. Crit Rev Microbiol 2018;44:715-38.
    OpenUrlCrossRef
  7. 7.↵
    1. Freimanis G,
    2. Hooley P,
    3. Ejtehadi HD, et al.
    A role for human endogenous retrovirus-K (HML-2) in rheumatoid arthritis: investigating mechanisms of pathogenesis. Clin Exp Immunol 2010;160:340-7.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Reynier F,
    2. Verjat T,
    3. Turrel F, et al.
    Increase in human endogenous retrovirus HERV-K (HML-2) viral load in active rheumatoid arthritis. Scand J Immunol 2009;70:295-9.
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. Mameli G,
    2. Erre GL,
    3. Caggiu E, et al.
    Identification of a HERV-K Env surface peptide highly recognized in rheumatoid arthritis (RA) patients: a cross-sectional case-control study. Clin Exp Immunol 2017;189:127-31.
    OpenUrlCrossRef
  10. 10.↵
    1. Nelson PN,
    2. Roden D,
    3. Nevill A, et al.
    Rheumatoid arthritis is associated with IgG antibodies to human endogenous retrovirus gag matrix: a potential pathogenic mechanism of disease? J Rheumatol 2014;41:1952-60.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Hohn O,
    2. Hanke K,
    3. Bannert N.
    HERV-K(HML-2), the best preserved family of HERVs: endogenization, expression, and implications in health and disease. Front Oncol 2013;3:246.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Jha AR,
    2. Nixon DF,
    3. Rosenberg MG, et al.
    Human endogenous retrovirus K106 (HERV-K106) was infectious after the emergence of anatomically modern humans. PLoS One 2011;6:e20234.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Kahyo T,
    2. Yamada H,
    3. Tao H,
    4. Kurabe N,
    5. Sugimura H.
    Insertionally polymorphic sites of human endogenous retrovirus-K (HML-2) with long target site duplications. BMC Genomics 2017;18:487.
    OpenUrl
  14. 14.↵
    1. Wildschutte JH,
    2. Williams ZH,
    3. Montesion M,
    4. Subramanian RP,
    5. Kidd JM,
    6. Coffin JM.
    Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc Natl Acad Sci U S A 2016;113:E2326-34.
    OpenUrlAbstract/FREE Full Text
  15. 15.↵
    1. Belshaw R,
    2. Dawson AL,
    3. Woolven-Allen J,
    4. Redding J,
    5. Burt A,
    6. Tristem M.
    Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity. J Virol 2005;79:12507-14.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. Lenz J.
    HERV-K HML-2 diversity among humans. Proc Natl Acad Sci U S A 2016;113:4240-2.
    OpenUrlFREE Full Text
  17. 17.↵
    1. Beimforde N,
    2. Hanke K,
    3. Ammar I,
    4. Kurth R,
    5. Bannert N.
    Molecular cloning and functional characterization of the human endogenous retrovirus K113. Virology 2008;371:216-25.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Boller K,
    2. Schonfeld K,
    3. Lischer S, et al.
    Human endogenous retrovirus HERV-K113 is capable of producing intact viral particles. J Gen Virol 2008;89:567-72.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Grow EJ,
    2. Flynn RA,
    3. Chavez SL, et al.
    Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 2015;522:221-5.
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. Montesion M,
    2. Bhardwaj N,
    3. Williams ZH,
    4. Kuperwasser C,
    5. Coffin JM.
    Mechanisms of HERV-K (HML-2) transcription during human mammary epithelial cell transformation. J Virol 2018;92:e01258-17.
    OpenUrl
  21. 21.↵
    1. Goering W,
    2. Ribarska T,
    3. Schulz WA.
    Selective changes of retroelement expression in human prostate cancer. Carcinogenesis 2011;32:1484-92.
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. Contreras-Galindo R,
    2. Kaplan MH,
    3. Markovitz DM,
    4. Lorenzo E,
    5. Yamamura Y.
    Detection of HERV-K(HML-2) viral RNA in plasma of HIV type 1-infected individuals. AIDS Res Hum Retroviruses 2006;22:979-84.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Contreras-Galindo R,
    2. González M,
    3. Almodovar-Camacho S,
    4. González-Ramírez S,
    5. Lorenzo E,
    6. Yamamura Y.
    A new real-time-RT-PCR for quantitation of human endogenous retroviruses type K (HERV-K) RNA load in plasma samples: increased HERV-K RNA titers in HIV-1 patients with HAART non-suppressive regimens. J Virol Methods 2006;136:51-7.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Gonzalez-Hernandez MJ,
    2. Swanson MD,
    3. Contreras-Galindo R, et al.
    Expression of human endogenous retrovirus type K (HML-2) is activated by the Tat protein of HIV-1. J Virol 2012;86:7790-805.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Bhardwaj N,
    2. Maldarelli F,
    3. Mellors J,
    4. Coffin JM.
    HIV-1 infection leads to increased transcription of human endogenous retrovirus HERV-K (HML-2) proviruses in vivo but not to increased virion production. J Virol 2014;88:11108-20.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. de Mulder M,
    2. SenGupta D,
    3. Deeks SG, et al.
    Anti-HERV-K (HML-2) capsid antibody responses in HIV elite controllers. Retrovirology 2017;14:41.
    OpenUrl
  27. 27.↵
    1. Ehlhardt S,
    2. Seifert M,
    3. Schneider J,
    4. Ojak A,
    5. Zang KD,
    6. Mehraein Y.
    Human endogenous retrovirus HERV-K(HML-2) Rec expression and transcriptional activities in normal and rheumatoid arthritis synovia. J Rheumatol 2006;33:16-23.
    OpenUrlAbstract/FREE Full Text
  28. 28.↵
    1. Michaud HA,
    2. de Mulder M,
    3. SenGupta D, et al.
    Trans-activation, post-transcriptional maturation, and induction of antibodies to HERV-K (HML-2) envelope transmembrane protein in HIV-1 infection. Retrovirology 2014;11:10.
    OpenUrlCrossRefPubMed
  29. 29.↵
    1. Hefton A,
    2. Liang SY,
    3. Ni K, et al.
    Autoantibodies against citrullinated serum albumin in patients with rheumatoid arthritis. J Transl Autoimmun 2019;2:100023.
    OpenUrl
  30. 30.↵
    1. Steen J,
    2. Forsstrom B,
    3. Sahlstrom P, et al.
    Recognition of amino acid motifs, rather than specific proteins, by human plasma cell-derived monoclonal antibodies to posttranslationally modified proteins in rheumatoid arthritis. Arthritis Rheumatol 2019;71:196-209.
    OpenUrl
  31. 31.↵
    1. Bach M,
    2. Moon J,
    3. Moore R,
    4. Pan T,
    5. Nelson JL,
    6. Lood C.
    A neutrophil activation biomarker panel in prognosis and monitoring of patients with rheumatoid arthritis. Arthritis Rheumatol 2020;72:47-56.
    OpenUrl
  32. 32.↵
    1. Duvvuri B,
    2. Pachman LM,
    3. Morgan G, et al.
    Neutrophil extracellular traps in tissue and periphery in juvenile dermatomyositis. Arthritis Rheumatol 2020;72:448-58.
    OpenUrl
  33. 33.↵
    1. Schellekens GA,
    2. de Jong BA,
    3. van den Hoogen FH,
    4. van de Putte LB,
    5. van Venrooij WJ.
    Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest 1998;101:273-81.
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. Yamada R.
    Peptidylarginine deiminase type 4, anticitrullinated peptide antibodies, and rheumatoid arthritis. Autoimmun Rev 2005;4:201-6.
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. van Jaarsveld CH,
    2. ter Borg EJ,
    3. Jacobs JW, et al.
    The prognostic value of the antiperinuclear factor, anti-citrullinated peptide antibodies and rheumatoid factor in early rheumatoid arthritis. Clin Exp Rheumatol 1999;17:689-97.
    OpenUrlPubMed
  36. 36.↵
    1. Yamada R,
    2. Suzuki A,
    3. Chang X,
    4. Yamamoto K.
    Peptidylarginine deiminase type 4: identification of a rheumatoid arthritis-susceptible gene. Trends Mol Med 2003;9:503-8.
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. Suzuki A,
    2. Yamada R,
    3. Chang X, et al.
    Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 2003; 34:395-402.
    OpenUrlCrossRefPubMed
  38. 38.↵
    1. Hua J,
    2. Huang W.
    Peptidylarginine deiminase 4 -104C/T polymorphism and risk of rheumatoid arthritis: a pooled analysis based on different populations. PLoS One 2018;13:e0193674.
    OpenUrl
  39. 39.↵
    1. Too CL,
    2. Murad S,
    3. Dhaliwal JS, et al.
    Polymorphisms in peptidylarginine deiminase associate with rheumatoid arthritis in diverse Asian populations: evidence from MyEIRA study and meta-analysis. Arthritis Res Ther 2012;14:R250.
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. Vossenaar ER,
    2. Zendman AJ,
    3. van Venrooij WJ,
    4. Pruijn GJ.
    PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 2003;25:1106-18.
    OpenUrlCrossRefPubMed
  41. 41.↵
    1. Jones JE,
    2. Causey CP,
    3. Knuckley B,
    4. Slack-Noyes JL,
    5. Thompson PR.
    Protein arginine deiminase 4 (PAD4): current understanding and future therapeutic potential. Curr Opin Drug Discov Devel 2009;12:616-27.
    OpenUrlPubMed
  42. 42.↵
    1. Raijmakers R,
    2. van Beers JJ,
    3. El-Azzouny M, et al.
    Elevated levels of fibrinogen-derived endogenous citrullinated peptides in synovial fluid of rheumatoid arthritis patients. Arthritis Res Ther 2012;14:R114.
    OpenUrlCrossRefPubMed
  43. 43.↵
    1. Jones RB,
    2. Leal FE,
    3. Hasenkrug AM, et al.
    Human endogenous retrovirus K(HML-2) Gag and Env specific T-cell responses are not detected in HTLV-I-infected subjects using standard peptide screening methods. J Negat Results Biomed 2013;12:3.
    OpenUrlCrossRefPubMed
  44. 44.↵
    1. Jones RB,
    2. Garrison KE,
    3. Mujib S, et al.
    HERV-K-specific T cells eliminate diverse HIV-1/2 and SIV primary isolates. J Clin Invest 2012;122:4473-89.
    OpenUrlCrossRefPubMed
  45. 45.↵
    1. Mustelin T,
    2. Bottini N,
    3. Stanford SM.
    The contribution of PTPN22 to rheumatological disease. Arthritis Rheumatol 2019;71:486-95.
    OpenUrl
  46. 46.↵
    1. Zhou Y,
    2. Chen B,
    3. Mittereder N, et al.
    Spontaneous secretion of the citrullination enzyme PAD2 and cell surface exposure of PAD4 by neutrophils. Front Immunol 2017;8:1200.
    OpenUrl
  47. 47.↵
    1. Pratesi F,
    2. Tommasi C,
    3. Anzilotti C,
    4. Chimenti D,
    5. Migliorini P.
    Deiminated Epstein-Barr virus nuclear antigen 1 is a target of anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheum 2006;54:733-41.
    OpenUrlCrossRefPubMed
  48. 48.↵
    1. Ono M,
    2. Kawakami M,
    3. Ushikubo H.
    Stimulation of expression of the human endogenous retrovirus genome by female steroid hormones in human breast cancer cell line T47D. J Virol 1987;61:2059-62.
    OpenUrlAbstract/FREE Full Text
  49. 49.↵
    1. Montesion M,
    2. Williams ZH,
    3. Subramanian RP,
    4. Kuperwasser C,
    5. Coffin JM.
    Promoter expression of HERV-K (HML-2) provirus-derived sequences is related to LTR sequence variation and polymorphic transcription factor binding sites. Retrovirology 2018;15:57.
    OpenUrl
  50. 50.↵
    1. Gabriel U,
    2. Steidler A,
    3. Trojan L,
    4. Michel MS,
    5. Seifarth W,
    6. Fabarius A.
    Smoking increases transcription of human endogenous retroviruses in a newly established in vitro cell model and in normal urothelium. AIDS Res Hum Retroviruses 2010;26:883-8.
    OpenUrlCrossRefPubMed
  51. 51.↵
    1. Wallace TA,
    2. Downey RF,
    3. Seufert CJ, et al.
    Elevated HERV-K MRNA expression in PBMC is associated with a prostate cancer diagnosis particularly in older men and smokers. Carcinogenesis 2014;35:2074-83.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

The Journal of Rheumatology
Vol. 49, Issue 1
1 Jan 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Index by Author
  • Editorial Board (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about The Journal of Rheumatology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Autoantibodies Against Unmodified and Citrullinated Human Endogenous Retrovirus K Envelope Protein in Patients With Rheumatoid Arthritis
(Your Name) has forwarded a page to you from The Journal of Rheumatology
(Your Name) thought you would like to see this page from the The Journal of Rheumatology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Autoantibodies Against Unmodified and Citrullinated Human Endogenous Retrovirus K Envelope Protein in Patients With Rheumatoid Arthritis
Xiaoxing Wang, Amanda Hefton, Kathryn Ni, Kennedy C. Ukadike, Michael A. Bowen, Mary Eckert, Anne Stevens, Christian Lood, Tomas Mustelin
The Journal of Rheumatology Jan 2022, 49 (1) 26-35; DOI: 10.3899/jrheum.201492

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

 Request Permissions

Share
Autoantibodies Against Unmodified and Citrullinated Human Endogenous Retrovirus K Envelope Protein in Patients With Rheumatoid Arthritis
Xiaoxing Wang, Amanda Hefton, Kathryn Ni, Kennedy C. Ukadike, Michael A. Bowen, Mary Eckert, Anne Stevens, Christian Lood, Tomas Mustelin
The Journal of Rheumatology Jan 2022, 49 (1) 26-35; DOI: 10.3899/jrheum.201492
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENT
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
  • eLetters

Keywords

CITRULLINATION
endogenous retrovirus K
envelope
JUVENILE IDIOPATHIC ARTHRITIS
RHEUMATOID ARTHRITIS

Related Articles

Cited By...

More in this TOC Section

  • Risk Factors for Dementia in Patients With Incident Rheumatoid Arthritis: A Population-Based Cohort Study
  • Can Patients With Controlled Rheumatoid Arthritis Taper Methotrexate From Targeted Therapy and Sustain Remission? A Systematic Review and Metaanalysis
  • Physical Activity Associates With Lower Systemic Inflammatory Gene Expression in Rheumatoid Arthritis
Show more Rheumatoid Arthritis

Similar Articles

Keywords

  • citrullination
  • endogenous retrovirus K
  • envelope
  • juvenile idiopathic arthritis
  • rheumatoid arthritis

Content

  • First Release
  • Current
  • Archives
  • Collections
  • Audiovisual Rheum
  • COVID-19 and Rheumatology

Resources

  • Guide for Authors
  • Submit Manuscript
  • Author Payment
  • Reviewers
  • Advertisers
  • Classified Ads
  • Reprints and Translations
  • Permissions
  • Meetings
  • FAQ
  • Policies

Subscribers

  • Subscription Information
  • Purchase Subscription
  • Your Account
  • Terms and Conditions

More

  • About Us
  • Contact Us
  • My Alerts
  • My Folders
  • Privacy/GDPR Policy
  • RSS Feeds
The Journal of Rheumatology
The content of this site is intended for health care professionals.
Copyright © 2022 by The Journal of Rheumatology Publishing Co. Ltd.
Print ISSN: 0315-162X; Online ISSN: 1499-2752
Powered by HighWire