Oligoarticular and polyarticular JIA: epidemiology and pathogenesis

Nat Rev Rheumatol. 2009 Nov;5(11):616-26. doi: 10.1038/nrrheum.2009.209. Epub 2009 Oct 6.

Abstract

Juvenile idiopathic arthritis (JIA) refers to a group of chronic childhood arthropathies of unknown etiology, currently classified into subtypes primarily on the basis of clinical features. Research has focused on the hypothesis that these subtypes arise through distinct etiologic pathways. In this Review, we discuss four subtypes of JIA: persistent oligoarticular, extended oligoarticular, rheumatoid-factor-positive polyarticular and rheumatoid-factor-negative polyarticular. These subtypes differ in prevalence between ethnic groups and are associated with different HLA alleles. Non-HLA genetic risk factors have also been identified, some of which reveal further molecular differences between these subtypes, while others suggest mechanistic overlap. Investigations of immunophenotypes also provide insights into subtype differences: adaptive immunity seems to have a prominent role in both polyarticular and oligoarticular JIA, and the more-limited arthritis observed in persistent oligoarticular JIA as compared with extended oligoarticular JIA may reflect more-potent immunoregulatory T-cell activity in the former. Tumor necrosis factor seems to be a key mediator of both polyarticular and oligoarticular JIA, especially in the extended oligoarticular subtype, although elevated levels of other cytokines are also observed. Limited data on monocytes, dendritic cells, B cells, natural killer T cells and neutrophils suggest that the contributions of these cells differ across subtypes of JIA. Within each subtype, however, common pathways seem to drive joint damage.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adaptive Immunity / immunology*
  • Arthritis, Juvenile* / epidemiology
  • Arthritis, Juvenile* / genetics
  • Arthritis, Juvenile* / immunology
  • Genetic Predisposition to Disease*
  • Global Health
  • Humans
  • Major Histocompatibility Complex / genetics*
  • Morbidity / trends
  • Phenotype
  • Risk Factors