Skip to main content
Log in

Lack of Interaction of Milnacipran with the Cytochrome P450 Isoenzymes Frequently Involved in the Metabolism of Antidepressants

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Objective: To compare the pharmacokinetics of milnacipran in extensive metabolisers (EMs) and poor metabolisers (PMs) of sparteine and mephenytoin, and to assess the influence of multiple administrations of milnacipran on the activity of cytochrome P450 (CYP) isoenzymes through its own metabolism and through various probes, namely CYP2D6 (sparteine/dextromethorphan), CYP2C19 (mephenytoin), CYP1A2 (caffeine) and CYP3A4 (endogenous 6-β-hydroxy-cortisol excretion).

Methods: Twenty-five healthy subjects, 12 EMs for both sparteine/dextromethorphan and mephenytoin, nine EMs for mephenytoin and PMs for sparteine/dextromethorphan (PM2D6) and four PMs for mephenytoin and EMs for sparteine/dextromethorphan (PM2C19) were administered milnacipran as a single 50mg capsule on day 1 followed by a 50mg capsule twice daily for 7 days. The pharmacokinetics of milnacipran and its oxidative metabolites were assessed after the first dose (day 1) and after multiple administration (day 8), and were compared for differences between CYP2D6 and CYP2C19 PMs and EMs. Metabolic tests were performed before (day —2), during (days 1 and 8) and after (day 20) milnacipran administration.

Results: Milnacipran steady state was rapidly achieved. Metabolism was limited: approximately 50% unchanged drug, 30% as glucuronide and 20% as oxidative metabolite (mainly F2800 the N-dealkyl metabolite). Milnacipran administration to PM2D6 and PM2C19 subjects did not increase parent drug exposure or decrease metabolite exposure. Milnacipran oxidative metabolism is not mediated through CYP2D6 or CYP2C19 polymorphic pathways nor does it significantly interact with CYP1A2, CYP2C19, CYP2D6 or CYP3A4 activities.

Conclusion: Limited reciprocal pharmacokinetic interaction between milnacipran and CYP isoenzymes would confer flexibility in the therapeutic use of the drug when combined with antidepressants. Drug-drug interaction risk would be low, even if the combined treatments were likely to inhibit CYP2D6 and CYP2C19 isoenzyme activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Table II
Table III
Table IV

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Bonnaud B, Cousse H, Mouzin G, et al. 1-Aryl-2- (aminomethyl) cyclopropane-carboxylic acid derivatives: a new series of potential antidepressants. J Med Chem 1987; 30: 318–25

    Article  PubMed  CAS  Google Scholar 

  2. Moret C, Briley M. Effects of milnacipran and pindolol on extracellular noradrenaline and serotonin levels in guinea pig hypothalamus. J Neurochem 1997; 69: 815–22

    Article  PubMed  CAS  Google Scholar 

  3. Moret C, Charveron M, Finberg JPM, et al. Biochemical profile of midalcipran (F2207), 1-phenyH-diethyl-aminocarbonyl-2-aminomethyl-cyclopropane (Z) hydrochloride, a potential fourth generation antidepressant drug. Neuropharmacology 1985; 24: 1211–9

    Article  PubMed  CAS  Google Scholar 

  4. Stenger A, Couzinier JP, Briley M. Psychopharmacology of midalcipran, 1-phenyl-1-diethyl-aminocarbonyl-2-aminoethyl-cyclopropane (Z) hydrochloride (F2207), a new potential antidepressant. Psychopharmacology 1987; 91: 147–53

    Article  PubMed  CAS  Google Scholar 

  5. Ansseau M, Von Frenckell R, Mertens C, et al. Controlled comparison of two doses of milnacipran (F2207) and amytriptyline in major depressive inpatients. Psychopharmacology 1989; 98: 163–8

    Article  PubMed  CAS  Google Scholar 

  6. Ansseau M, Von Frenckell R, Papart P, et al. Controlled comparison of milnacipran (F2207) 200mg and amitriptyline in endogenous depressive inpatients. Hum Psychopharmacol 1989; 4: 221–7

    Article  Google Scholar 

  7. Hindmarch I, Rigney U, Stanley N, et al. Pharmacodynamics of milnacipran in young and elderly volunteers. Br J Clin Pharmacol 2000; 49(2): 118–25

    Article  PubMed  CAS  Google Scholar 

  8. Kasper S, Pletan Y, Solles A, et al. Comparative studies with milnacipran and tricyclic antidepressants in the treatment of patients with major depression: a summary of clinical trial results. Int Clin Psychopharmacol 1996; 11 Suppl. 4: 35–9

    Article  PubMed  Google Scholar 

  9. Lecrubier Y, Pletan Y, Solles A, et al. Clinical efficacy of milnacipran: placebo-controlled trials. Int Clin Psychopharmacol 1996; 11 Suppl. 4: 29–33

    Article  PubMed  Google Scholar 

  10. Montgomery SA, Prost JF, Solles A, et al. Efficacy and tolerability of milnacipran: an overview. Int Clin Psychopharmacol 1996; 11 Suppl. 4: 47–51

    Article  PubMed  Google Scholar 

  11. Rouillon F, Berdeaux G, Bisserbe JC, et al. Prevention of recurrent depressive episodes with milnacipran: consequences on quality of life. J Affect Disord 2000; 58: 171–80

    Article  PubMed  CAS  Google Scholar 

  12. Rouillon F, Warner B, Pezous N, et al. Milnacipran efficacy in the prevention of recurrent depression: a 12-month placebocontrolled study. Milnacipran Recurrence Prevention Study Group. Int Clin Psychopharmacol 2000; 15: 133–40

    Article  PubMed  CAS  Google Scholar 

  13. Benard P, Puozzo C. Distribution of midalcipran and its metabolites in rats and mice: whole-body autoradiographic study. Proc Roy Microsc Soc 1986; 21(5): 288–9

    Google Scholar 

  14. Benard P, Puozzo C, Roux C, et al. Transplacental passage and milk excretion of radioactivity in laboratory animals dosed with C-F2207: a quantitative whole-body autoradiographic study. In: Baille TA, Jones JR, editors. Synthesis and applications of isotopically labeled compound. Amsterdam: Elsevier Science Publishers, 1988: 637–40

    Google Scholar 

  15. Deprez D, Chassard D, Baille P, et al. Which bioequivalence study for a racemic drug? Application to milnacipran. Eur J Drug Metab Pharmacokinet 1998; 23(2): 166–71

    Article  PubMed  CAS  Google Scholar 

  16. Higuchi H, Yoshida K, Takahashi H, et al. Milnacipran plasma levels and antidepressant response in Japanese major depressive patients. Hum Psychopharmacol 2003; 18(4): 255–9

    Article  PubMed  CAS  Google Scholar 

  17. Palmier C, Puozzo C, Lenehan T, et al. Monoamine uptake inhibition by plasma from healthy volunteers after single oral doses of the antidepressant milnacipran. Eur J Clin Pharmacol 1989; 37(3): 235–8

    Article  PubMed  CAS  Google Scholar 

  18. Preskorn SH. Clinically relevant pharmacology of selective serotonin reuptake inhibitors: an overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet 1997; 32: 1–21

    Article  PubMed  CAS  Google Scholar 

  19. Puozzo C, Filaquier C, Briley M. Plasma levels of F2207 midalcipran, a novel antidepressant after single oral administration in volunteers. Br J Pharmacol 1985; 20(3): 291–2

    Google Scholar 

  20. Puozzo C, Lambe R, Briley M. Inhibition of tritiated 5 hydroxytryptamine uptake in platelets by plasma from volunteers after a single oral dose of F2207 midalcipran, a novel antidepressant [abstract]. Br J Pharmacol 1985; 20(3): 292

    Google Scholar 

  21. Puozzo C, Lambe R, Filaquier C, et al. Plasma levels and (3H)-5HT uptake in platelets after human repeated administration of midalcipran [abstract]. Acta Pharmacol Toxicol 1986; 59(S5): 214

    Google Scholar 

  22. Puozzo C, Leonard BE. Pharmacokinetics of milnacipran in comparison with other antidepressants. Int Clin Psychopharmacol 1996; 11 Suppl. 4: 15–27

    Article  PubMed  Google Scholar 

  23. Puozzo C, Albin H, Vinçon G, et al. Pharmacokinetics of milnacipran in liver impairment. Eur J Drug Metab Pharmacokinet 1998; 23(2): 273–9

    Article  PubMed  CAS  Google Scholar 

  24. Puozzo C, Pozet N, Deprez D, et al. Pharmacokinetics of milnacipran in renal impairment. Eur J Drug Metab Pharmacokinet 1998; 23(2): 280–6

    Article  PubMed  CAS  Google Scholar 

  25. Sawada Y, Ohtani H. Pharmacokinetics and drug interactions of antidepressive agents. Nippon Rinsho 2001; 59(8): 1539–45

    PubMed  CAS  Google Scholar 

  26. Nebert DW, Nelson DR, Adesnik M, et al. The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA 1989; 8(1): 1–13

    Article  PubMed  CAS  Google Scholar 

  27. Nelson DR, Kamataki T, Waxman DJ, et al. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 1993; 12(1): 1–51

    Article  PubMed  CAS  Google Scholar 

  28. Bertilsson L. Geographical/interracial differences in polymorphic drug oxidation: current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet 1995; 29(3): 192–209

    Article  PubMed  CAS  Google Scholar 

  29. Gonzalez FJ, Ilde JR. Pharmacogenetic phenotyping and genotyping: present status and future potential. Clin Pharmacokinet 1994; 26: 59–70

    Article  PubMed  CAS  Google Scholar 

  30. Lamba JK, Lin YS, Schuetz EG, et al. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54(10): 1271–94

    Article  PubMed  CAS  Google Scholar 

  31. Bertilsson L, Dahl ML, Tybring G. Pharmacogenetics of antidepressants: clinical aspects. Acta Psychiatr Scand Suppl 1997; 391: 14–21

    Article  PubMed  CAS  Google Scholar 

  32. Rodrigues AD. Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. Biochem Pharmacol 1999; 57: 465–80

    Article  PubMed  CAS  Google Scholar 

  33. Weber WW. Populations and genetic polymorphisms. Mol Diagn 1999; 4(4): 299–307

    Article  PubMed  CAS  Google Scholar 

  34. Coutts RT, Su P, Baker GB. Involvement of CYP2D6, CYP3A4, and other cytochrome P-450 isozymes in N-dealkylation reactions. J Pharmacol Toxicol Methods 1994; 31(4): 177–86

    Article  PubMed  CAS  Google Scholar 

  35. Yokono A, Morita S, Someya T, et al. The effect of CYP2C19 and CYP2D6 genotypes on the metabolism of clomipramine in Japanese psychiatric patients. J Clin Psychopharmacol 2001; 21(6): 549–55

    Article  PubMed  CAS  Google Scholar 

  36. Koyama E, Chiba K, Tani M, et al. Identification of human cytochrome P450 isoforms involved in the stereoselective metabolism of mianserin enantiomers. J Pharmacol Exp Ther 1996; 278(1): 21–30

    PubMed  CAS  Google Scholar 

  37. Freis ED. Ethnics differences in the reactions to drugs and xenobiotics: antihypertensive agents. Prog Clin Biol Res 1986; 214: 313–22

    PubMed  CAS  Google Scholar 

  38. Fujieda M, Yamazaki H, Kamataki T. Genetic polymorphisms of drug metabolizing enzymes. Gan To Kagaku Ryoho 2002; 29(5): 663–8

    PubMed  CAS  Google Scholar 

  39. Kubota T, Yamaura Y, Ohkawa N, et al. Frequencies of CYP2D6 mutant alleles in a normal Japanese population and metabolic activity of dextromethorphan O-demethylation in different CYP2D6 genotypes. Br J Clin Pharmacol 2000; 50(1): 31–4

    Article  PubMed  CAS  Google Scholar 

  40. Brosen K, Gram LF. Clinical significance of the sparteine/debrisoquine oxidation polymorphism. Eur J Clin Pharmacol 1989; 36: 537–47

    Article  PubMed  CAS  Google Scholar 

  41. Fukuda T, Nishida Y, Imaoka S, et al. The decreased in vivo clearance of CYP2D6 substrates by CYP2D6*10 might be caused not only by the low-expression but also by low affinity of CYP2D6. Arch Biochem Biophys 2000; 380(2): 303–8

    Article  PubMed  CAS  Google Scholar 

  42. Shimoda K, Someya T, Yokono A, et al. The impact of CYP2C19 and CYP2D6 genotypes on metabolism of amitriptyline in Japanese psychiatric patients. J Clin Psychopharmacol 2002; 22(4): 371–8

    Article  PubMed  CAS  Google Scholar 

  43. Caccia S. Metabolism of the newer antidepressants: an overview of the pharmacological and pharmacokinetic implications. Clin Pharmacokinet 1998; 34: 281–302

    Article  PubMed  CAS  Google Scholar 

  44. Grzesiak M, Beszlej JA, Kiejna A. Pharmacokinetics of second generation antidepressants. Psychiatr Pol 2000; 34(4): 577–94

    PubMed  CAS  Google Scholar 

  45. Kusumoto M, Ueno K, Oda A, et al. Effect of fluvoxamine on the pharmacokinetics of mexiletine in healthy Japanese men. Clin Pharmacol Ther 2001; 69(3): 104–7

    Article  PubMed  CAS  Google Scholar 

  46. Puozzo C, Agvaz U, Zick M, et al. A new enantioselective GC-MS method for the determination of milnacipran and two of its metabolites in human plasma. Portland (OR): American Society for Mass Spectrometry, 1996

    Google Scholar 

  47. Puozzo C, Filaquier C, Zorza G. Determination of milnacipran, a serotonin and noradrenaline reuptake inhibitor, in human plasma using liquid chromatography with spectrofluorimetric detection. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 806(2): 221–8

    Article  PubMed  CAS  Google Scholar 

  48. Brockmoller J, Roots I. Assessment of liver metabolic function: clinical implications. Clin Pharmacokinet 1994; 27: 216–48

    Article  PubMed  CAS  Google Scholar 

  49. Sanz EJ, Villen T, Alm C, et al. S-mephenytoin hydroxylation phenotypes in a Swedish populaton determined after coadministration with debrisoquin. Clin Pharmacol Ther 1989; 45(5): 495–9

    Article  PubMed  CAS  Google Scholar 

  50. Kalow W, Tang BK. Use of caffeine metabolite ratios to explore CYP1A2 and xanthine oxidase activities. Clin Pharmacol Ther 1991; 50(5): 508–19

    Article  PubMed  CAS  Google Scholar 

  51. Roots I, Hovermann W, Nigam S, et al. Quantitative determination by HPLC of urinary 6β-OH-cortisol, an indicator of enzyme induction by rifampicin and antiepileptic drugs. Eur J Clin Pharmacol 1979; 16: 63–71

    Article  PubMed  CAS  Google Scholar 

  52. Rowland M, Tozer T. Clinical pharmacokinetics; concepts and application. Philadelphia (PA): Lea & Febiger, 1980

    Google Scholar 

  53. Kivisto KT, Kroemer HK. Use of probe drugs as predictors of drug metabolism in humans. J Clin Pharmacol 1997; 37 (1 Suppl.): 40–8S

    Article  Google Scholar 

  54. Droll K, Bruce-Mensah K, Otton SV, et al. Comparison of three CYP2D6 probe substrates and genotype in Ghanaians, Chinese and Caucasians. Pharmacogenetics 1998; 8(4): 325–33

    Article  PubMed  CAS  Google Scholar 

  55. Regina W, Vandel P, Vandel S, et al. Clinical tolerance of a new antidepressant: milnacipran. Encephale 1999; 25(3): 252–8

    PubMed  CAS  Google Scholar 

  56. Fuhr U, Rost KL. Simple and reliable CYP1A2 phenotyping by the paraxanthine/caffeine ratio in plasma and in saliva. Pharmacogenetics 1994; 4(3): 109–16

    Article  PubMed  CAS  Google Scholar 

  57. Guelfi JD, Ansseau M, Corruble E, et al. A double-blind comparison of the efficacy and safety of milnacipran and fluoxetine in depressed inpatients. Int Clin Psychopharmacol 1998; 13(3): 121–8

    Article  PubMed  CAS  Google Scholar 

  58. Puozzo C, Panconi E, Deprez D. Pharmacology and pharmacokinetics of milnacipran. Int Clin Psychopharmacol 2002; 17(1): 25–35

    Article  Google Scholar 

  59. Leucht S, Hackl HJ, Steimer W, et al. Effect of adjunctive paroxetine on serum levels and side-effects of tricyclic antidepressants in depressive inpatients. Psychopharmacology (Berl) 2000; 147(4): 378–83

    Article  CAS  Google Scholar 

  60. Spigset O, Granberg K, Hagg S, et al. Relationship between fluvoxamine pharmacokinetics and CYP2D6/CYP2C19 phenotype polymorphisms. Eur J Clin Pharmacol 1997; 52: 129–33

    Article  PubMed  CAS  Google Scholar 

  61. Swanson JR, Jones GR, Krasselt W, et al. Death of two subjects due to imipramine and desipramine metabolite accumulation during chronic therapy: a review of the literature and possible mechanisms. J Forensic Sci 1997; 42(2): 335–9

    PubMed  CAS  Google Scholar 

  62. von Moltke LL, Greenblatt DJ, Duan SX, et al. Inhibition of desipramine hydroxylation (cytochrome P450-2D6) in vitro by quinidine and by viral protease inhibitors: relation to drug interactions in vivo. J Pharm Sci 1998; 87(10): 1184–9

    Article  Google Scholar 

  63. Xu Z, Xie H, Zhou H. In vivo inhibition of CYP2C19 but not CYP2D6 by fluvoxamine. Br J Clin Pharmacol 1996; 42: 518–21

    Article  PubMed  CAS  Google Scholar 

  64. Preskorn SH, Baker B. Fatality associated with combined fluoxetine-amitriptyline therapy [letter]. JAMA 1997; 277(21): 1682

    PubMed  CAS  Google Scholar 

  65. Sindrup SH, Brosen K, Gram LF, et al. The relationships between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51: 278–87

    Article  PubMed  CAS  Google Scholar 

  66. Albers LJ, Reist C, Helmeste D, et al. Paroxetine shifts imipramine metabolism. Psychiatry Res 1996; 59(3): 189–96

    Article  PubMed  CAS  Google Scholar 

  67. Albers LJ, Reist C, Vu RL, et al. Effect of venlafaxine on imipramine metabolism. Psychiatry Res 2000; 96(3): 235–43

    Article  PubMed  CAS  Google Scholar 

  68. Alderman J, Preskorn SH, Greenblatt DJ, et al. Desipramine pharmacokinetics when co-administered with paroxetine or sertraline in extensive metabolizers. J Clin Psychopharmacol 1997; 17(4): 284–91

    Article  PubMed  CAS  Google Scholar 

  69. Ball SE, Ahern D, Scatina J, et al. Venlafaxine: in vitro inhibition of CYP2D6 dependent imipramine and desipramine metabolism; comparative studies with selected SSRIs, and effects on human hepatic CYP3A4, CYP2C9 and CYP1A2. Br J Clin Pharmacol 1997; 43(6): 619–26

    Article  PubMed  CAS  Google Scholar 

  70. Brosen K, Hansen JG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44(4): 349–55

    Article  PubMed  CAS  Google Scholar 

  71. Gram LF, Hansen MG, Sindrup SH, et al. Citalopram: interaction studies with levomepromazine, imipramine, and lithium. Ther Drug Monit 1993; 15(1): 18–24

    Article  PubMed  CAS  Google Scholar 

  72. Kurtz DL, Bergstrom RF, Goldberg MJ, et al. The effect of sertraline on the pharmacokinetics of desipramine and imipramine. Clin Pharmacol Ther 1997; 62(2): 145–56

    Article  PubMed  CAS  Google Scholar 

  73. Baumann P. Pharmacokinetic-pharmacodynamic relationship of the selective serotonin reuptake inhibitors. Clin Pharmacokinet 1996; 31(6): 444–69

    Article  PubMed  CAS  Google Scholar 

  74. Ereshefsky L, Riesenman C, Lam YW. Antidepressant drug interactions and the cytochrome P450 system: the role of cytochrome P450 2D6. Clin Pharmacokinet 1995; 29 Suppl. 1: 10–8

    Article  PubMed  CAS  Google Scholar 

  75. Hemeryck A, Belpaire FM. Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug-drug interactions: an update. Curr Drug Metab 2002; 3(1): 13–37

    Article  PubMed  CAS  Google Scholar 

  76. Nemeroff CB, DeVane CL, Pollock BG. Newer antidepressants and the cytochrome P450 system. Am J Psychiatry 1996; 153: 311–20

    PubMed  CAS  Google Scholar 

  77. Sallee FR, Pollock BG. Clinical pharmacokinetics of imipramine and desipramine. Clin Pharmacokinet 1990; 18(5): 346–64

    Article  PubMed  CAS  Google Scholar 

  78. Shin JG, Park JY, Kim MJ, et al. Inhibitory effects of tricyclic antidepressants (TCAs) on human cytochrome P450 enzymes in vitro: mechanism of drug interaction between TCAs and Phenytoin. Drug Metab Dispos 2002; 30(10): 1102–7

    Article  PubMed  CAS  Google Scholar 

  79. Puozzo C, Deprez D, Gengler C, et al. Lack of pharmacokinetic interaction when switching from fluoxetine to milnacipran. Int Clin Psychopharmacol. In press

  80. Crewe HK, Lennard MS, Tucker GT, et al. The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol 1992; 34: 262–5

    Article  PubMed  CAS  Google Scholar 

  81. Jeppesen U, Gram L, Vistisen K, et al. Dose dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by Citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 1996; 51: 73–8

    Article  PubMed  CAS  Google Scholar 

  82. Moller HJ. Are all antidepressants the same? J Clin Psychiatry 2000; 61 Suppl. 6: 24–8

    PubMed  Google Scholar 

  83. Tamminga WJ, Werner J, Oosterhuis B, et al. Polymorphic drug metabolism (CYP2D6) and utilisation of psychotropic drugs in hospitalised psychiatric patients: a retrospective study. Eur J Clin Pharmacol 2003; 59(1): 57–64

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this study. The authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Puozzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puozzo, C., Lens, S., Reh, C. et al. Lack of Interaction of Milnacipran with the Cytochrome P450 Isoenzymes Frequently Involved in the Metabolism of Antidepressants. Clin Pharmacokinet 44, 977–988 (2005). https://doi.org/10.2165/00003088-200544090-00007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200544090-00007

Keywords

Navigation