Exp Clin Endocrinol Diabetes 2013; 121(06): 347-353
DOI: 10.1055/s-0033-1341516
Article
© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Dysregulated miR-155 expression in peripheral blood mononuclear cells from patients with type 2 diabetes

N. E. Corral-Fernández
1   Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, UASLP, San Luis Potosí, SLP, México
,
M. Salgado-Bustamante
1   Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, UASLP, San Luis Potosí, SLP, México
,
M. E. Martínez-Leija
1   Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, UASLP, San Luis Potosí, SLP, México
,
N. Cortez-Espinosa
1   Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, UASLP, San Luis Potosí, SLP, México
,
M. H. García-Hernández
2   Unidad de Investigación Médica, IMSS, Zacatecas, Zac, México
,
E. Reynaga-Hernández
1   Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, UASLP, San Luis Potosí, SLP, México
,
R. Quezada-Calvillo
1   Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, UASLP, San Luis Potosí, SLP, México
,
D. P. Portales-Pérez
1   Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, UASLP, San Luis Potosí, SLP, México
› Author Affiliations
Further Information

Publication History

received 29 October 2012
first decision 29 October 2012

accepted 18 March 2013

Publication Date:
24 April 2013 (online)

Abstract

Objective:

MicroRNAs (miRNAs) are involved in gene regulation of several physiological processes. Alterations in the concentrations of miRNAs may result in cancer and autoimmune diseases. In cells of the immune system, miRNA expression is regulated by several cytokines and this expression is related to the inflammatory process. In the present work we evaluated miR-155 and miR-146a levels in peripheral blood mononuclear cells (PBMC) from patients with type 2 diabetes (T2D).

Materials/Methods:

We analysed the expression of miRNAs in PBMC from T2D patients (n=20) and control subjects (n=20) using real-time PCR. The quantity of IL-1β and IL-6 in culture supernatants was measured by ELISA.

Results:

The basal expression of miR-155 and miR-146a in patients with T2D was decreased compared to control subjects and associated with age, gender and metabolic control but not with the therapeutic treatment used. We found significant correlations between the basal expression of miR-155 and miR-146a with HbA1c, Glucose and BMI, as well as of miR-155 expression stimulated by LPS with the values of TG, HbA1c, Glucose and BMI. Additionally, we detected an altered distribution of miR-155 and miR-146a expression related with HbA1c, glucose and BMI using the analysis of a three dimensional association of variables in the group of T2D patients.

Conclusions:

Downregulated levels of miR-155 could play an important role in the pathogenesis of T2D due to their relationship with metabolic control.

 
  • References

  • 1 Maraschin JF, Murussi N, Witter V et al. Diabetes mellitus classification. Arq Bras Cardiol 2010; 95: e40-e46
  • 2 Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 2004; 27: 813-823
  • 3 Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology 2007; 132: 2169-2180
  • 4 Kolb H, Mandrup-Poulsen T. An immune origin of type 2 diabetes?. Diabetologia 2005; 48: 1038-1050
  • 5 Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 2008; 14: 222-231
  • 6 Pillai RS. MicroRNA function: multiple mechanisms for a tiny RNA?. RNA 2005; 11: 1753-1761
  • 7 Friedman JM, Jones PA. MicroRNAs: critical mediators of differentiation, development and disease. Swiss Med Wkly 2009; 139: 466-472
  • 8 Li M, Marin-Muller C, Bharadwaj U et al. MicroRNAs: control and loss of control in human physiology and disease. World J Surg 2009; 33: 667-684
  • 9 Walker MD. Role of MicroRNA in pancreatic beta-cells: where more is less. Diabetes 2008; 57: 2567-2568
  • 10 Pandey AK, Agarwal P, Kaur K et al. MicroRNAs in diabetes: tiny players in big disease. Cell Physiol Biochem 2009; 23: 221-232
  • 11 Gallagher IJ, Scheele C, Keller P et al. Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med 2010; 2: 9
  • 12 Balasubramanyam M, Aravind S, Gokulakrishnan K et al. Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol Cell Biochem 2011; 351: 197-205
  • 13 O’Connell RM, Taganov KD, Boldin MP et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 2007; 104: 1604-1609
  • 14 Tili E, Michaille JJ, Cimino A et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007; 179: 5082-5089
  • 15 Rodriguez A, Vigorito E, Clare S et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007; 316: 608-611
  • 16 Taganov KD, Boldin MP, Chang KJ et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12481-12486
  • 17 Pauley KM, Satoh M, Chan AL et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 2008; 10: R101
  • 18 Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008; 3: 1101-1108
  • 19 Herrera BM, Lockstone HE, Taylor JM et al. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes. BMC Med Genomics 2009; 2: 54
  • 20 Pauley KM, Satoh M, Chan AL et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 2008; 10: R101
  • 21 Murata K, Yoshitomi H, Tanida S et al. Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 2010; 12: R86
  • 22 Wu F, Zikusoka M, Trindade A et al. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology 2008; 135: 1624-1635
  • 23 Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444: 860-867
  • 24 O’Connell RM, Rao DS, Chaudhuri AA et al. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 2010; 10: 111-122
  • 25 Lodish HF, Zhou B, Liu G et al. Micromanagement of the immune system by microRNAs. Nat Rev Immunol 2008; 8: 120-130
  • 26 Ma X, Becker Buscaglia LE, Barker JR et al. MicroRNAs in NF-{kappa}B signaling. J Mol Cell Biol 2011; 3: 159-166
  • 27 Taganov KD, Boldin MP, Chang KJ et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12481-12486
  • 28 Imaizumi T, Tanaka H, Tajima A et al. IFN-gamma and TNF-alpha synergistically induce microRNA-155 which regulates TAB2/IP-10 expression in human mesangial cells. Am J Nephrol 2010; 32: 462-468
  • 29 Ichimura A, Ruike Y, Terasawa K et al. MicroRNA-34a inhibits cell proliferation by repressing mitogen-activated protein kinase kinase 1 during megakaryocytic differentiation of K562 cells. Mol Pharmacol 2010; 77: 1016-1024
  • 30 Mudhasani R, Imbalzano AN, Jones SN. An essential role for Dicer in adipocyte differentiation. J Cell Biochem 2010; 110: 812-816
  • 31 Kuipers H, Schnorfeil FM, Fehling HJ et al. Dicer-dependent microRNAs control maturation, function, and maintenance of Langerhans cells in vivo. J Immunol 2010; 185: 400-409
  • 32 Coley W, Van DR, Carpio L et al. Absence of DICER in monocytes and its regulation by HIV-1. J Biol Chem 2010; 285: 31930-31943
  • 33 Sato F, Tsuchiya S, Meltzer SJ et al. MicroRNAs and epigenetics. FEBS J 2011; 278: 1598-1609
  • 34 Duttagupta R, Jiang R, Gollub J et al. Impact of Cellular miRNAs on Circulating miRNA Biomarker Signatures. PLoS One 2011; 6: e20769
  • 35 Klinge CM. Estrogen Regulation of MicroRNA Expression. Curr Genomics 2009; 10: 169-183
  • 36 Noren HN, Abdelmohsen K, Gorospe M et al. microRNA expression patterns reveal differential expression of target genes with age. PLoS One 2010; 5: e10724
  • 37 Garcia-Garcia E, Aguilar-Salinas CA, Tusie-Luna T et al. Early-onset type 2 diabetes in Mexico. Isr Med Assoc J 2002; 4: 444-448
  • 38 Jimenez-Corona A, Rojas R, Gomez-Perez FJ et al. Early-onset type 2 diabetes in a Mexican survey: results from the National Health and Nutrition Survey 2006. Salud Publica Mex 2010; 52 (Suppl. 01) S27-S35
  • 39 Badawi A, Klip A, Haddad P et al. Type 2 diabetes mellitus and inflammation: Prospects for biomarkers of risk and nutritional intervention. Diabetes Metab Syndr Obes 2010; 3: 173-186
  • 40 Muller S, Martin S, Koenig W et al. Impaired glucose tolerance is associated with increased serum concentrations of interleukin 6 and co-regulated acute-phase proteins but not TNF-alpha or its receptors. Diabetologia 2002; 45: 805-812
  • 41 Creely SJ, McTernan PG, Kusminski CM et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 2007; 292: E740-E747
  • 42 Stegenga ME, van der Crabben SN, Dessing MC et al. Effect of acute hyperglycaemia and/or hyperinsulinaemia on proinflammatory gene expression, cytokine production and neutrophil function in humans. Diabet Med 2008; 25: 157-164
  • 43 Jagannathan-Bogdan M, McDonnell ME, Shin H et al. Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J Immunol 2011; 186: 1162-1172
  • 44 Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger?. Science 2010; 327: 296-300
  • 45 Garcia-Hernandez MH, Portales-Cervantes L, Cortez-Espinosa N et al. Expression and function of P2X(7) receptor and CD39/Entpd1 in patients with type 2 diabetes and their association with biochemical parameters. Cell Immunol 2011; 269: 135-143
  • 46 Rayner KJ, Suarez Y, Davalos A et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010; 328: 1570-1573
  • 47 Marquart TJ, Allen RM, Ory DS et al. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA 2010; 107: 12228-12232
  • 48 Ortega FJ, Moreno-Navarrete JM, Pardo G et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One 2010; 5: e9022
  • 49 Antuna-Puente B, Feve B, Fellahi S, Bastard JP. Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab 2008; 34: 2-11
  • 50 Hilton C, Neville MJ, Karpe F. MicroRNAs in adipose tissue: their role in adipogenesis and obesity. Int J Obes (Lond) 2012; 10
  • 51 McGregor RA, Choi MS. microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 2011; 11: 304-316
  • 52 Kloting N, Berthold S, Kovacs P et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 2009; 4: e4699