Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

High-resolution in vivo imaging of bone and joints: a window to microarchitecture

Key Points

  • High-resolution peripheral quantitative CT (HR-pQCT) enables noninvasive evaluation of bones and joints by producing high-resolution 3D images with exposure to only low levels of radiation

  • The ability to measure cortical and trabecular bone density and architecture separately has enabled us to better understand changes that occur with age, differences between sexes and races, and the effects of drug treatment

  • Bone involvement in rheumatic diseases of the hand joints is heterogeneous, and a growing body of evidence indicates that 3D image analysis will enable us to quantify these changes

  • Fracture healing is a complex process with concomitant and subsequent changes in cortical and trabecular bone density and architecture

  • Segmenting cortical and trabecular compartments requires measurement of the transitional zone between them for accurate assessment of the effects of growth, ageing, disease, and drug therapy

Abstract

Imaging is essential to the evaluation of bone and joint diseases, and the digital era has contributed to an exponential increase in the number of publications on noninvasive analytical techniques for the quantification of changes to bone and joints that occur in health and in disease. One such technique is high-resolution peripheral quantitative CT (HR-pQCT), which has introduced a new dimension in the imaging of bone and joints by providing images that are both 3D and at high resolution (82 μm isotropic voxel size), with a low level of radiation exposure (3–5 μSv). HR-pQCT enables the analysis of cortical and trabecular properties separately and to apply micro-finite element analysis for calculating bone biomechanical competence in vivo at the distal sites of the skeleton (distal radius and distal tibia). Moreover, HR-pQCT makes possible the in vivo assessment of the spatial distribution, dimensions and delineation of cortical bone erosions, osteophytes, periarticular cortical and trabecular microarchitecture, and 3D joint-space volume of the finger joints and wrists. HR-pQCT is, therefore, a technique with a high potential for improving our understanding of bone and joint diseases at the microarchitectural level.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HR-pQCT.
Figure 2: Imaging of cortical and trabecular compartments with HR-pQCT.
Figure 3: HR-pQCT image showing bone apposition (green) and resorption (red) during fracture healing.46
Figure 4: HR-pQCT imaging of anatomical sites prone to develop bone erosions.
Figure 5: HR-pQCT images showing increment and decline of cortical and trabecular vBMD during growth and ageing.

Similar content being viewed by others

References

  1. Link, T. M. Osteoporosis imaging: state of the art and advanced imaging. Radiology 263, 3–17 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kanis, J. A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos. Int. 4, 368–381 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Seeman, E. Clinical review 137: Sexual dimorphism in skeletal size, density, and strength. J. Clin. Endocrinol. Metab. 86, 4576–4584 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Nicks, K. M. et al. Relationship of age to bone microstructure independent of areal bone mineral density. J. Bone Miner. Res. 27, 637–644 (2012).

    Article  PubMed  Google Scholar 

  5. Sanders, K. M. et al. Half the burden of fragility fractures in the community occur in women without osteoporosis. When is fracture prevention cost-effective? Bone 38, 694–700 (2006).

    Article  PubMed  Google Scholar 

  6. Schuit, S. C. et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34, 195–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Siris, E. S. et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch. Intern. Med. 164, 1108–1112 (2004).

    Article  PubMed  Google Scholar 

  8. Langsetmo, L. et al. Repeat low-trauma fractures occur frequently among men and women who have osteopenic BMD. J. Bone Miner. Res. 24, 1515–1522 (2009).

    Article  PubMed  Google Scholar 

  9. Delmas, P. D. & Seeman, E. Changes in bone mineral density explain little of the reduction in vertebral or nonvertebral fracture risk with anti-resorptive therapy. Bone 34, 599–604 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Müller, R., Hildebrand, T. & Rüegsegger, P. Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone. Phys. Med. Biol. 39, 145–164 (1994).

    Article  PubMed  Google Scholar 

  11. Laib, A., Häuselmann, H. J. & Rüegsegger, P. In vivo high resolution 3D-QCT of the human forearm. Technol. Health Care 6, 329–37 (1998).

    CAS  PubMed  Google Scholar 

  12. Boutroy, S., Bouxsein, M. L., Munoz, F. & Delmas, P. D. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab. 90, 6508–6515 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Khosla, S. et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J. Bone Miner. Res. 21, 124–131 (2006).

    Article  PubMed  Google Scholar 

  14. Macdonald, H. M., Nishiyama, K. K., Kang, J., Hanley, D. A. & Boyd, S. K. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J. Bone Miner. Res. 26, 50–62 (2011).

    Article  PubMed  Google Scholar 

  15. Dalzell, N. et al. Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT. Osteoporos. Int. 20, 1683–1694 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Burghardt, A. J., Kazakia, G. J., Ramachandran, S., Link, T. M. & Majumdar, S. Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J. Bone Miner. Res. 25, 983–993 (2010).

    Article  PubMed  CAS  Google Scholar 

  17. Meunier, P. et al. Physiological senile involution and pathological rarefaction of bone. Quantitative and comparative histological data. Clin. Endocrinol. Metab. 2, 239–256 (1973).

    Article  CAS  PubMed  Google Scholar 

  18. Sornay-Rendu, E., Munoz, F., Garnero, P., Duboeuf, F. & Delmas, P. D. Identification of osteopenic women at high risk of fracture: the OFELY study. J. Bone Miner. Res. 20, 1813–1819 (2005).

    Article  PubMed  Google Scholar 

  19. Vico, L. et al. High-resolution pQCT analysis at the distal radius and tibia discriminates patients with recent wrist and femoral neck fractures. J. Bone Miner. Res. 23, 1741–1750 (2008).

    Article  PubMed  Google Scholar 

  20. Sornay-Rendu, E., Cabrera-Bravo, J. L., Boutroy, S., Munoz, F. & Delmas, P. D. Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J. Bone Miner. Res. 24, 737–743 (2009).

    Article  PubMed  Google Scholar 

  21. Boutroy, S. et al. Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J. Bone Miner. Res. 23, 392–399 (2008).

    Article  PubMed  Google Scholar 

  22. Vilayphiou, N. et al. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in postmenopausal women. Bone 46, 1030–1037 (2010).

    Article  PubMed  Google Scholar 

  23. Pialat, J. B. et al. Local topological analysis at the distal radius by HR-pQCT: application to in vivo bone microarchitecture and fracture assessment in the OFELY study. Bone 51, 362–368 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Seeman, E. Growth in bone mass and size—are racial and gender differences in bone mineral density more apparent than real? J. Clin. Endocrinol. Metab. 83, 1414–1419 (1998).

    CAS  PubMed  Google Scholar 

  25. Wang, X. F., Duan, Y., Beck, T. J. & Seeman, E. Varying contributions of growth and ageing to racial and sex differences in femoral neck structure and strength in old age. Bone 36, 978–986 (2005).

    Article  PubMed  Google Scholar 

  26. Xu, L., Lu, A., Zhao, X., Chen, X. & Cummings, S. R. Very low rates of hip fracture in Beijing, People's Republic of China: the Beijing Osteoporosis Project. Am. J. Epidemiol. 144, 901–907 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, X. F. et al. Differences in macro- and microarchitecture of the appendicular skeleton in young Chinese and white women. J. Bone Miner. Res. 24, 1946–1952 (2009).

    Article  PubMed  Google Scholar 

  28. Liu, X. S. et al. Better skeletal microstructure confers greater mechanical advantages in Chinese-American women versus white women. J. Bone Miner. Res. 26, 1783–1792 (2011).

    Article  PubMed  Google Scholar 

  29. Boutroy, S. et al. Lower cortical porosity and higher tissue mineral density in Chinese-American versus white women. J. Bone Miner. Res. http://dx.doi.org/10.1002/jbmr.2057.

  30. Nishiyama, K. K. et al. Cortical porosity is higher in boys compared with girls at the distal radius and distal tibia during pubertal growth: an HR-pQCT study. J. Bone Miner. Res. 27, 273–282 (2012).

    Article  PubMed  Google Scholar 

  31. Szulc, P. et al. Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men: the STRAMBO study. J. Bone Miner. Res. 26, 1358–1367 (2011).

    Article  PubMed  Google Scholar 

  32. Blokhuis, T. J. et al. The reliability of plain radiography in experimental fracture healing. Skeletal Radiol. 30, 151–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Panjabi, M. M., Lindsey, R. W., Walter, S. D. & White, A. A. 3rd. The clinician's ability to evaluate the strength of healing fractures from plain radiographs. J. Orthop. Trauma 3, 29–32 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Davis, B. J. et al. Reliability of radiographs in defining union of internally fixed fractures. Injury 35, 557–561 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Firoozabadi, R. et al. Qualitative and quantitative assessment of bone fragility and fracture healing using conventional radiography and advanced imaging technologies—focus on wrist fracture. J. Orthop. Trauma 22 (Suppl.), S83–S90 (2008).

    Article  PubMed  Google Scholar 

  36. Marsh, D. Concepts of fracture union, delayed union, and nonunion. Clin. Orthop. Relat. Res. 355 (Suppl.), S22–S30 (1998).

    Article  Google Scholar 

  37. Sevitt, S. The healing of fractures of the lower end of the radius. A histological and angiographic study. J. Bone Joint Surg. Br. 53, 519–531 (1971).

    Article  CAS  PubMed  Google Scholar 

  38. Uhthoff, H. K. & Rahn, B. A. Healing patterns of metaphyseal fractures. Clin. Orthop. Relat. Res. 160, 295–303 (1981).

    Google Scholar 

  39. Bhattacharyya, T. et al. The accuracy of computed tomography for the diagnosis of tibial nonunion. J. Bone Joint Surg. Am. 88, 692–697 (2006).

    PubMed  Google Scholar 

  40. Singh, H. P. et al. Partial union of acute scaphoid fractures. J. Hand Surg. Br. 30, 440–445 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Zhu, Y. et al. Computed tomography-based Three-Column Classification in tibial plateau fractures: introduction of its utility and assessment of its reproducibility. J. Trauma Acute Care Surg. 73, 731–737 (2012).

    Article  PubMed  Google Scholar 

  42. Grigoryan, M. et al. Quantitative and qualitative assessment of closed fracture healing using computed tomography and conventional radiography. Acad. Radiol. 10, 1267–1273 (2003).

    Article  PubMed  Google Scholar 

  43. Markel, M. D., Morin, R. L., Wikenheiser, M. A., Lewallen, D. G. & Chao, E. Y. Quantitative CT for the evaluation of bone healing. Calcif. Tissue Int. 49, 427–432 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Augat, P., Merk, J., Genant, H. K. & Claes, L. Quantitative assessment of experimental fracture repair by peripheral computed tomography. Calcif. Tissue Int. 60, 194–199 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Mueller, T. L. et al. Mechanical stability in a human radius fracture treated with a novel tissue-engineered bone substitute: a non-invasive, longitudinal assessment using high-resolution pQCT in combination with finite element analysis. J. Tissue Eng. Regen. Med. 5, 415–420 (2011).

    Article  PubMed  Google Scholar 

  46. Bours, S. et al. Fracture healing in postmenopausal women with a distal radius fracture monitored by high-resolution peripheral quantitative computer tomography (HRpQCT): a pilot study [MO0056]. Presented at the ASBMR 2012 Annual Meeting.

  47. Burghardt, A. J. et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 95, 5045–5055 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nickolas, T. L., McMahon, D. J. & Shane, E. Relationship between moderate to severe kidney disease and hip fracture in the United States. J. Am. Soc. Nephrol. 17, 3223–3232 (2006).

    Article  PubMed  Google Scholar 

  49. Nickolas, T. L. et al. Bone mass and microarchitecture in CKD patients with fracture. J. Am. Soc. Nephrol. 21, 1371–1380 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bacchetta, J. et al. Early impairment of trabecular microarchitecture assessed with HR-pQCT in patients with stage II–IV chronic kidney disease. J. Bone Miner. Res. 25, 849–857 (2010).

    PubMed  Google Scholar 

  51. Pelletier, S. et al. Bone microarchitecture is more severely affected in patients on hemodialysis than in those receiving peritoneal dialysis. Kidney Int. 82, 581–588 (2012).

    Article  PubMed  Google Scholar 

  52. Hansen, S., Beck Jensen, J. E., Rasmussen, L., Hauge, E. M. & Brixen, K. Effects on bone geometry, density, and microarchitecture in the distal radius but not the tibia in women with primary hyperparathyroidism: a case–control study using HR-pQCT. J. Bone Miner. Res. 25, 1941–1947 (2010).

    Article  PubMed  Google Scholar 

  53. Romme, E. A. et al. Bone stiffness and failure load are related with clinical parameters in men with chronic obstructive pulmonary disease. J. Bone Miner. Res. 28, 2186–2193 (2013).

    Article  PubMed  Google Scholar 

  54. Bala, Y. et al. Risedronate slows or partly reverses cortical and trabecular micro-architectural deterioration in postmenopausal women. J. Bone Miner. Res. 29, 380–388 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Chapurlat, R. D. et al. Effect of oral monthly ibandronate on bone microarchitecture in women with osteopenia—a randomized placebo-controlled trial. Osteoporos. Int. 24, 311–320 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Burghardt, A. J. et al. A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J. Bone Miner. Res. 25, 2558–2571 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Seeman, E. et al. Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J. Bone Miner. Res. 25, 1886–1894 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rizzoli, R. et al. Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis. Results of a 2-year study. Osteoporos. Int. 23, 305–315 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. De Papp, A. et al. Effects of odanacatib on the distal radius and tibia in postmenopausal women: improvements in cortical geometry and estimated bone strength [presentation 1028]. Presented at the ASBMR 2012 Annual Meeting.

  60. MacNeil, J. A. & Boyd, S. K. Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med. Eng. Phys. 30, 792–799 (2008).

    Article  PubMed  Google Scholar 

  61. Pialat, J. B., Burghardt, A. J., Sode, M., Link, T. M. & Majumdar, S. Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture. Bone 50, 111–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Stach, C. M. et al. Periarticular bone structure in rheumatoid arthritis patients and healthy individuals assessed by high-resolution computed tomography. Arthritis Rheum. 62, 330–339 (2010).

    PubMed  Google Scholar 

  63. Srikhum, W. et al. Quantitative and semiquantitative bone erosion assessment on high-resolution peripheral quantitative computed tomography in rheumatoid arthritis. J. Rheumatol. 40, 408–416 (2013).

    Article  PubMed  Google Scholar 

  64. Barnabe, C., Szabo, E., Martin, L., Boyd, S. K. & Barr, S. G. Quantification of small joint space width, periarticular bone microstructure and erosions using high-resolution peripheral quantitative computed tomography in rheumatoid arthritis. Clin. Exp. Rheumatol. 31, 243–250 (2013).

    PubMed  Google Scholar 

  65. Albrecht, A. et al. The structural basis of MRI bone erosions: an assessment by microCT. Ann. Rheum. Dis. 72, 1351–1357 (2013).

    Article  PubMed  Google Scholar 

  66. Finzel, S. et al. Interleukin-6 receptor blockade induces limited repair of bone erosions in rheumatoid arthritis: a micro CT study. Ann. Rheum. Dis. 72, 396–400 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Finzel, S. et al. Repair of bone erosions in rheumatoid arthritis treated with tumour necrosis factor inhibitors is based on bone apposition at the base of the erosion. Ann. Rheum. Dis. 70, 1587–1593 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Kleyer, A. et al. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2012-202958.

  69. Finzel, S., Englbrecht, M., Engelke, K., Stach, C. & Schett, G. A comparative study of periarticular bone lesions in rheumatoid arthritis and psoriatic arthritis. Ann. Rheum. Dis. 70, 122–127 (2011).

    Article  PubMed  Google Scholar 

  70. Finzel, S. et al. Bone anabolic changes progress in psoriatic arthritis patients despite treatment with methotrexate or tumour necrosis factor inhibitors. Ann. Rheum. Dis. 72, 1176–1181 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Zhu, T. Y. et al. Structure and strength of the distal radius in female patients with rheumatoid arthritis: a case–control study. J. Bone Miner. Res. 28, 794–806 (2013).

    Article  PubMed  Google Scholar 

  72. Fouque-Aubert, A. et al. Assessment of hand bone loss in rheumatoid arthritis by high-resolution peripheral quantitative CT. Ann. Rheum. Dis. 69, 1671–1676 (2010).

    Article  PubMed  Google Scholar 

  73. Wang, Q. et al. Rapid growth produces transient cortical weakness: a risk factor for metaphyseal fractures during puberty. J. Bone Miner. Res. 25, 1521–1526 (2010).

    Article  PubMed  Google Scholar 

  74. Walker, M. D. et al. Differences in bone microarchitecture between postmenopausal Chinese-American and white women. J. Bone Miner. Res. 26, 1392–1398 (2011).

    Article  PubMed  Google Scholar 

  75. Seeman, E. Bone morphology in response to alendronate as seen by high-resolution computed tomography: through a glass darkly. J. Bone Miner. Res. 25, 2553–2557 (2010).

    Article  PubMed  CAS  Google Scholar 

  76. Keshawarz, N. M. & Recker, R. R. Expansion of the medullary cavity at the expense of cortex in postmenopausal osteoporosis. Metab. Bone Dis. Relat. Res. 5, 223–228 (1984).

    Article  CAS  PubMed  Google Scholar 

  77. Zebaze, R. M. et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375, 1729–1736 (2010).

    Article  PubMed  Google Scholar 

  78. Zebaze, R., Ghasem-Zadeh, A., Mbala, A. & Seeman, E. A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images. Bone 54, 8–20 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Laib, A. & Rüegsegger, P. Comparison of structure extraction methods for in vivo trabecular bone measurements. Comput. Med. Imaging Graph. 23, 69–74 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Sode, M., Burghardt, A. J., Nissenson, R. A. & Majumdar, S. Resolution dependence of the non-metric trabecular structure indices. Bone 42, 728–736 (2008).

    Article  PubMed  Google Scholar 

  81. Burrows, M. et al. Assessing bone microstructure at the distal radius in children and adolescents using HR-pQCT: a methodological pilot study. J. Clin. Densitom. 13, 451–455 (2010).

    Article  PubMed  Google Scholar 

  82. Boyd, S. K. Site-specific variation of bone micro-architecture in the distal radius and tibia. J. Clin. Densitom. 11, 424–430 (2008).

    Article  PubMed  Google Scholar 

  83. Valentinitsch, A. et al. Computational identification and quantification of trabecular microarchitecture classes by 3-D texture analysis-based clustering. Bone 54, 133–140 (2013).

    Article  PubMed  Google Scholar 

  84. Meganck, J. A., Kozloff, K. M., Thornton, M. M., Broski, S. M. & Goldstein, S. A. Beam hardening artifacts in micro-computed tomography scanning can be reduced by X-ray beam filtration and the resulting images can be used to accurately measure BMD. Bone 45, 1104–1116 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Burghardt, A. J. et al. Multicenter precision of cortical and trabecular bone quality measures assessed by high-resolution peripheral quantitative computed tomography. J. Bone Miner. Res. 28, 524–536 (2013).

    Article  PubMed  Google Scholar 

  86. Sode, M., Burghardt, A. J., Pialat, J. B., Link, T. M. & Majumdar, S. Quantitative characterization of subject motion in HR-pQCT images of the distal radius and tibia. Bone 48, 1291–1297 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Boivin, G. et al. Influence of remodeling on the mineralization of bone tissue. Osteoporos. Int. 20, 1023–1026 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hayward, L. N., de Bakker, C. M., Gerstenfeld, L. C., Grinstaff, M. W. & Morgan, E. F. Assessment of contrast-enhanced computed tomography for imaging of cartilage during fracture healing. J. Orthop. Res. 31, 567–573 (2013).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Piet Geusens.

Ethics declarations

Competing interests

P.G. is the coordinator of clinical studies with high-resolution peripheral quantitative CT (HR pQCT) for which Maastricht University Medical Centre received grants from Amgen, Pfizer and Will Pharma. R.C. has been a consultant, speaker, or clinical investigator with the following companies: Amgen, Bioiberica, BMS, Chugai, Lilly, Merck, Novartis, Novo, Pfizer, Servier and UCB; R.C. has no direct or indirect link to the manufacturer of HR pQCT. A.G.-Z. is one of the inventors of StrAx1.0, an algorithm used to quantify bone microstructure. E.S. is Director of StraxCorp and one of the inventors of StrAx1.0. G.S., J.d.J, and J.v.d.B. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geusens, P., Chapurlat, R., Schett, G. et al. High-resolution in vivo imaging of bone and joints: a window to microarchitecture. Nat Rev Rheumatol 10, 304–313 (2014). https://doi.org/10.1038/nrrheum.2014.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.23

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing