Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The problem of choice: current biologic agents and future prospects in RA

Abstract

The introduction of biologic agents to clinical practice has had a major bearing on the treatment of patients with chronic inflammatory diseases such as rheumatoid arthritis. These drugs have the potential to improve the outcome of disease and the quality of life for patients. However, clinical criteria alone are inadequate for determining which therapy is most appropriate for an individual patient. Furthermore, why a particular drug is effective in a particular patient, or indeed in any patient, but is ineffective for other individuals, is often unknown. In this Review, we provide an overview of biologic therapies currently available for patients with rheumatoid arthritis, and discuss why certain immunological regulators represent potential targets for intervention. Current agents can be clustered into three major types: cytokine blockers, lymphocyte-targeting agents, and small-molecule inhibitors of signal transduction pathways. We differentiate among the modes of action of each of these types of therapy and consider the challenges associated with their use in clinical practice.

Key Points

  • Current interventions in rheumatoid arthritis (RA) can be classified into three major types: cytokine blockers, lymphocyte-targeting agents, and small-molecule inhibitors of signal transduction pathways

  • In the absence of reliable biomarkers, mode of action could be a useful tool in guiding choice of biologic therapy

  • Adverse effects of biologic agents are either class specific or compound specific; class-specific effects reflect the biological role of the target

  • Early-phase clinical trials in RA in the past few years have mostly focused on cytokine blockers and small-molecule inhibitors of signal transduction pathways

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenesis of RA: synovial and systemic inflammation.
Figure 2: Cytokine network in RA: overlap and interplay between cytokines drives synovial inflammation.
Figure 3: Cytokines and their signalling pathways: different cytokines use different intracellular signalling pathways.

Similar content being viewed by others

References

  1. Singh, J. A. et al. 2012 update of the 2008 American College of Rheumatology recommendations for the use of disease-modifying antirheumatic drugs and biologic agents in the treatment of rheumatoid arthritis. Arthritis Care Res. 64, 625–639 (2012).

    Article  CAS  Google Scholar 

  2. Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann. Rheum. Dis. 69, 964–975 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Singh, J. A. et al. Biologics for rheumatoid arthritis: an overview of Cochrane reviews. Sao Paulo Med. J. 128, 309–310 (2010).

    Article  PubMed  Google Scholar 

  4. Smolen, J. S. et al. Golimumab in patients with active rheumatoid arthritis after treatment with tumour necrosis factor alpha inhibitors (GO-AFTER study): a multicentre, randomised, double-blind, placebo-controlled, phase III trial. Lancet 374, 210–221 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Genovese, M. C. et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor α inhibition. N. Engl. J. Med. 353, 1114–1123 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Emery, P. et al. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Ann. Rheum. Dis. 67, 1516–1523 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Molenaar, E. T. et al. Progression of radiologic damage in patients with rheumatoid arthritis in clinical remission. Arthritis Rheum. 50, 36–42 (2004).

    Article  PubMed  Google Scholar 

  9. Furst, D. E. et al. Adalimumab, a fully human anti tumor necrosis factor-α monoclonal antibody, and concomitant standard antirheumatic therapy for the treatment of rheumatoid arthritis: results of STAR (Safety Trial of Adalimumab in Rheumatoid Arthritis). J. Rheumatol. 30, 2563–71 (2003).

    CAS  PubMed  Google Scholar 

  10. Klareskog, L., Catrina, A. I., Paget, S. Rheumatoid arthritis. Lancet 373, 659–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Isaacs, J. D. et al. Effect of baseline rheumatoid factor and anti-citrullinated peptide antibody serotype on rituximab clinical response: a meta-analysis. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2011-201117

  12. Bugatti, S. A. et al. Synovial tissue heterogeneity and peripheral blood biomarkers. Curr. Rheumatol. Rep. 13, 440–448 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. de Hair, M. J. et al. Synovial tissue analysis for the discovery of diagnostic and prognostic biomarkers in patients with early arthritis. J. Rheumatol. 38, 2068–2072 (2011).

    Article  PubMed  Google Scholar 

  14. van de Sande, M. G. et al. Evaluating antirheumatic treatments using synovial biopsy: a recommendation for standardization to be used in clinical trials. Ann. Rheum. Dis. 70, 423–427 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. McInnes, I. B. & O'Dell, J. R. State-of-the-art: rheumatoid arthritis. Ann. Rheum. Dis. 69, 1898–1906 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Stranger, B. E., Stahl, E. A. & Raj, T. Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 187, 367–383 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feldmann, M., Brennan, F. M., Maini, R. N. Role of cytokines in rheumatoid arthritis. Ann. Rev. Immunol. 14, 397–440 (1996).

    Article  CAS  Google Scholar 

  18. Stahl, E. A. et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Gen. 42, 508–514 (2010).

    Article  CAS  Google Scholar 

  19. Woodrick, R. S. & Ruderman, E. M. Safety of biologic therapy in rheumatoid arthritis. Nat. Rev. Rheumatol. 7, 639–652 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Choy, E. H. & Panayi, G. S. Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med. 344, 907–916 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Dayer, J. M. & Choy, E. Therapeutic targets in rheumatoid arthritis: the interleukin-6 receptor. Rheumatology 49, 15–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Raison, C. L., Capuron, L. & Miller, A. H. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 27, 24–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Kirkham, B. Interleukin-1, immune activation pathways, and different mechanisms in osteoarthritis and rheumatoid arthritis. Ann. Rheum. Dis. 50, 395–400 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carroll, G., Bell, M., Wang, H., Chapman, H. & Mills, J. Antagonism of the IL-6 cytokine subfamily—a potential strategy for more effective therapy in rheumatoid arthritis. Inflamm. Res. 47, 1–7 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Busso, N. & So, A. Mechanisms of inflammation in gout. Arthritis Res. Ther. 12, 206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aaltonen, K. J. et al. Systematic review and meta-analysis of the efficacy and safety of existing TNF blocking agents in treatment of rheumatoid arthritis. PLoS ONE 7, e30275 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Singh, J. A., Beg, S. & Lopez-Olivo, M. A. Tocilizumab for rheumatoid arthritis: a Cochrane systematic review. J. Rheumatol. 38, 10–20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Brennan, F. M., Maini, R. N. & Feldmann, M. TNF α--a pivotal role in rheumatoid arthritis? Br. J. Rheumatol. 31, 293–298 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Yokota, S. et al. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet. 371, 998–1006 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Silke, J. The regulation of TNF signalling: what a tangled web we weave. Curr. Opin. Immunol. 23, 620–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Kamimura, D., Ishihara, K. & Hirano, T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev. Physiol. Biochem. Pharmacol. 149, 1–38 (2003).

    CAS  PubMed  Google Scholar 

  33. Nowell, M. A. et al. Therapeutic targeting of IL-6 trans signaling counteracts STAT3 control of experimental inflammatory arthritis. J. Immunol. 182, 613–622 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. de Hooge, A. S. et al. Local activation of STAT-1 and STAT-3 in the inflamed synovium during zymosan-induced arthritis: exacerbation of joint inflammation in STAT-1 gene-knockout mice. Arthritis Rheum. 50, 2014–2023 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Hayden, M. S. & Ghosh, S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 26, 203–234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheon, H., Yang, J. & Stark, G. R. The functions of signal transducers and activators of transcriptions 1 and 3 as cytokine-inducible proteins. J. Interferon Cytokine Res. 31, 33–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones, S. A., Scheller, J. & Rose-John, S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J. Clin. Invest. 121, 3375–3383 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hsu, B., Sheng, S., Smolen, J. & Weinblatt, M. Results from a 2-part, proof-of-concept, dose-ranging, randomized, double-blind, placebo-controlled, phase 2 study of sirukumab, a human anti-interleukin-6 monoclonal antibody, in active rheumatoid arthritis patients despite methotrexate therapy. Arthritis Rheum. 63 (Suppl.), S1034 (2011).

    Google Scholar 

  39. Hickling, M. et al. Safety and pharmacokinetics of CDP6038, an anti-IL-6 monoclonal antibody, administered by subcutaneous injection and intravenous infusion to healthy male volunteers: a phase 1 study. Ann. Rheum. Dis. 70 (Suppl. 3), 471 (2011).

    Google Scholar 

  40. Mease, P. et al. A phase II, double-blind, randomised, placebo-controlled study of BMS945429 (ALD518) in patients with rheumatoid arthritis with an inadequate response to methotrexate. Ann. Rheum. Dis. 71, 1183–1189 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Radin, A. et al. Safety and effects on markers of inflammation of subcutaneously administered regn88/sar153191 (regn88), an interleukin-6 receptor inhibitor, in patients with rheumatoid arthritis: findings from phase 1 studies. Ann. Rheum. Dis. 69 (Suppl. 3), 99 (2010).

    Google Scholar 

  42. Lissilaa, R. et al. Although IL-6 trans-signaling is sufficient to drive local immune responses, classical IL-6 signaling is obligate for the induction of T cell-mediated autoimmunity. J. Immunol. 185, 5512–5521 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Richards, P. J. et al. Functional characterization of a soluble gp130 isoform and its therapeutic capacity in an experimental model of inflammatory arthritis. Arthritis Rheum. 54, 1662–1672 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Hueber, W. et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci. Transl. Med. 2, 52–72 (2010).

    Article  CAS  Google Scholar 

  45. Papp, K. A. et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med. 366, 1181–1189 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Gandhi, M. et al. Anti-p40 antibodies ustekinumab and briakinumab: blockade of interleukin-12 and interleukin-23 in the treatment of psoriasis. Semin. Cutan. Med. Surg. 29, 48–52 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Hunter, C. A. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat. Rev. Immunol. 5, 521–531 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Murphy, K. M. & Stockinger, B. Effector T cell plasticity: flexibility in the face of changing circumstances. Nat Immunol. 11, 674–680 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mukasa, A. et al. Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 32, 616–627 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, K. Y. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu, J. & Paul, W. E. CD4+ T cell plasticity—TH2 cells join the crowd. Immunity 32, 11–13 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou, L. et al. Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646–655 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Cornelissen, F. et al. Interleukin-23 is critical for full-blown expression of a non-autoimmune destructive arthritis and regulates interleukin-17A and RORγt in γδ T cells. Arthritis Res. Ther. 11, R194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cragg, M. S., Walshe, C. A., Ivanov, A. O. & Glennie, M. J. The biology of CD20 and its potential as a target for mAb therapy. Curr. Dir. Autoimmun. 8, 140–174 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Edwards, J. C., Leandro, M. J. & Cambridge, G. B lymphocyte depletion in rheumatoid arthritis: targeting of CD20. Curr. Dir. Autoimmun. 8, 175–192 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Vos, K. et al. Early effects of rituximab on the synovial cell infiltrate in patients with rheumatoid arthritis. Arthritis Rheum. 56, 772–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Teng, Y. K. et al. Immunohistochemical analysis as a means to predict responsiveness to rituximab treatment. Arthritis Rheum. 56, 3909–3918 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Vital, E. M. et al. Management of nonresponse to rituximab in rheumatoid arthritis: predictors and outcome of re-treatment. Arthritis Rheum. 62, 1273–1279 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Dorner, T., Kinnman, N. & Tak, P. P. Targeting B cells in immune-mediated inflammatory disease: a comprehensive review of mechanisms of action and identification of biomarkers. Pharmacol. Ther. 125, 464–475 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Kausar, F. et al. Ocrelizumab: a step forward in the evolution of B-cell therapy. Exp. Opin. Biol. Ther. 9, 889–895 (2009).

    Article  CAS  Google Scholar 

  62. Goldenberg, D. M., Morschhauser, F. & Wegener, W. A. Veltuzumab (humanized anti-CD20 monoclonal antibody): characterization, current clinical results, and future prospects. Leuk. Lymphoma. 51, 747–755 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Taylor, P. C. et al. Ofatumumab, a fully human anti-CD20 monoclonal antibody, in biological-naive, rheumatoid arthritis patients with an inadequate response to methotrexate: a randomised, double-blind, placebo-controlled clinical trial. Ann. Rheum. Dis. 70, 2119–2125 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Dorner, T. & Goldenberg, D. M. Targeting CD22 as a strategy for treating systemic autoimmune diseases. Ther. Clin. Risk Manage. 3, 953–959 (2007).

    Google Scholar 

  65. Tak, P. P. et al. Atacicept in patients with rheumatoid arthritis: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating, single- and repeated-dose study. Arthritis Rheum. 58, 61–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Cohen, S. B. Updates from B cell trials: efficacy. J. Rheumatol. 77 (Suppl.), 12–17 (2006).

    CAS  Google Scholar 

  67. van Vollenhoven, R. F., Kinnman, N., Vincent, E., Wax, S. & Bathon, J. Atacicept in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase II, randomized, placebo-controlled trial. Arthritis Rheum. 63, 1782–1792 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Genovese, M. C., Kinnman, N., de La Bourdonnaye, G., Pena Rossi, C. & Tak, P. P. Atacicept in patients with rheumatoid arthritis and an inadequate response to tumor necrosis factor antagonist therapy: results of a phase II, randomized, placebo-controlled, dose-finding trial. Arthritis Rheum. 63, 1793–1803 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Shevach, E. M. Immunology: regulating suppression. Science 322, 202–203 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Lenschow, D. J. & Bluestone, J. A. T cell co-stimulation and in vivo tolerance. Curr. Opin. Immunol. 5, 747–752 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Buch, M. H. et al. Mode of action of abatacept in rheumatoid arthritis patients having failed tumour necrosis factor blockade: a histological, gene expression and dynamic magnetic resonance imaging pilot study. Ann. Rheum. Dis. 68, 1220–1227 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Ko, H. J. et al. CTLA4-Ig modifies dendritic cells from mice with collagen-induced arthritis to increase the CD4+CD25+Foxp3+ regulatory T cell population. J. Autoimmun. 34, 111–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Choy, E. H. Selective modulation of T-cell co-stimulation: a novel mode of action for the treatment of rheumatoid arthritis. Clin. Exp. Rheumatol. 27, 510–518 (2009).

    CAS  PubMed  Google Scholar 

  74. Remans, P. H. et al. CTLA-4IG suppresses reactive oxygen species by preventing synovial adherent cell-induced inactivation of Rap1, a Ras family GTPASE mediator of oxidative stress in rheumatoid arthritis T cells. Arthritis Rheum. 54, 3135–3143 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Alvarez-Quiroga, C. et al. CTLA-4-Ig therapy diminishes the frequency but enhances the function of TREG cells in patients with rheumatoid arthritis. J. Clin. Immunol. 31, 588–595 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Platt, A. M. et al. Abatacept limits breach of self-tolerance in a murine model of arthritis via effects on the generation of T follicular helper cells. J. Immunol. 185, 1558–1567 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Choy, E. H. et al. Repeat-cycle study of high-dose intravenous 4162W94 anti-CD4 humanized monoclonal antibody in rheumatoid arthritis. A randomized placebo-controlled trial. Rheumatology (Oxford) 41, 1142–1148 (2002).

    Article  CAS  Google Scholar 

  78. Yocum, D. E. et al. Clinical and immunologic effects of a PRIMATIZED anti-CD4 monoclonal antibody in active rheumatoid arthritis: results of a phase I, single dose, dose escalating trial. J. Rheumatol. 25, 1257–1262 (1998).

    CAS  PubMed  Google Scholar 

  79. Isaacs, J. D. Therapeutic T-cell manipulation in rheumatoid arthritis: past, present and future. Rheumatology 47, 1461–1468 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. O'Shea, J. J., Park, H., Pesu, M., Borie, D. & Changelian, P. New strategies for immunosuppression: interfering with cytokines by targeting the Jak/Stat pathway. Curr. Opin. Rheumatol. 17, 305–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Ghoreschi, K., Laurence, A. & O'Shea, J. J. Janus kinases in immune cell signaling. Immunol. Rev. 228, 273–287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jiang, H. et al. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137, 1343–1355 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fleischmann, R. Novel small-molecular therapeutics for rheumatoid arthritis. Curr. Opin. Rheumatol. 24, 335–341 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. O'Shea, J. J. & Murray, P. J. Cytokine signaling modules in inflammatory responses. Immunity. 28, 477–487 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Burmester, G. R. et al. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet http://dx.doi.org/10.1016/S0140-6736(12)61424-X.

  86. Yoshida, H. et al. Low dose CP-690, 550 (tofacitinib), a pan-JAK inhibitor, accelerates the onset of experimental autoimmune encephalomyelitis by potentiating TH17 differentiation. Biochem. Biophys. Res. Commun. 418, 234–240 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Sesin, C. A. & Bingham, C. O. 3rd. Remission in rheumatoid arthritis: wishful thinking or clinical reality? Semin. Arthritis Rheum. 35, 185–196 (2005).

    Article  PubMed  Google Scholar 

  88. Katchamart, W. Predictors for remission in rheumatoid arthritis patients: a systematic review. Arthritis Care Res. 62, 1128–1143 (2010).

    Article  Google Scholar 

  89. Genovese, M. C. et al. Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum. 50, 1412–1419 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Weinblatt, M. et al. Selective costimulation modulation using abatacept in patients with active rheumatoid arthritis while receiving etanercept: a randomised clinical trial. Ann. Rheum. Dis. 66, 228–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Dépis, F. et al. Long term amelioration of established collagen-induced arthritis achieved with short term therapy combining anti-CD3 and anti-TNF treatments. Arthritis Rheum. 64, 3189–3198 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Professors Ernest Choy and Simon Jones thank Arthritis Research UK for funding support provided through the CREATE Centre (20016) and research grants (19796, 19381, 18286).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to researching data for the article and writing the article. E. H. Choy handled review and editing of the article before submission.

Corresponding author

Correspondence to Ernest H. Choy.

Ethics declarations

Competing interests

E. H. Choy declares that he has received research grants from and has served as a member of advisory boards and speakers bureaus for Abbott, Allergan, AstraZeneca, Boehringer Ingelheim, Chelsea Therapeutics, Chugai Pharma, Eli Lilly, GlaxoSmithKline, Jazz Pharmaceuticals, Merrimack Pharmaceutical, Merck Sharp & Dohme, Pfizer, Pierre Fabre Medicament, Roche, Schering Plough, Synovate, UCB, and Wyeth. A. F. Kavanaugh declares that he has received research grants from Abbott, Amgen, Bristol-Myers Squibb, Janssen, Pfizer, Roche, and UCB. S. A. Jones declares that he has consultancy agreements with F. Hoffmann-La Roche and NovImmune SA and has acted as an advisor for Chugai Pharma Europe and Genentech. He is also recipient of an investigator-sponsored award from F. Hoffmann-La Roche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choy, E., Kavanaugh, A. & Jones, S. The problem of choice: current biologic agents and future prospects in RA. Nat Rev Rheumatol 9, 154–163 (2013). https://doi.org/10.1038/nrrheum.2013.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research