Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New insights into mechanisms of therapeutic effects of antimalarial agents in SLE

Abstract

Antimalarial agents have routinely been used for the treatment of systemic lupus erythematosus (SLE) for over 50 years. These agents continue to enjoy success as the initial pharmacotherapy for SLE even in the era of targeted therapies. Antimalarial agents have numerous biological effects that are responsible for their immunomodulatory actions in SLE. Their inhibitory effect on Toll-like receptor-mediated activation of the innate immune response is perhaps the most important discovery regarding their putative mechanism of action, but some other, previously known properties, such as antithrombotic and antilipidaemic effects, are now explained by new research. In the 1980s and 1990s, these antihyperlipidaemic and antithrombotic effects were demonstrated in retrospective clinical studies, and over the past few years prospective studies have confirmed those findings. Knowledge about the risk–benefit profile of antimalarial agents during pregnancy and lactation has evolved, as has the concept of retinal toxicity. Antimalarial agents have unique disease-modifying properties in SLE and newer iterations of this class of anti-inflammatory agents will have a profound effect upon the treatment of autoimmune disease.

Key Points

  • Antimalarial agents are the cornerstone agents in the clinical management of systemic lupus erythematosus

  • Toll-like receptor (TLR)-antagonism has emerged as an important mechanism of action of antimalarial agents

  • The antilipidaemic, photoprotective and antiproliferative effects of chloroquine, hydroxychloroquine and quinacrine are in part explained by TLR antagonism

  • Antimalarial agents also act by several additional molecular mechanisms, the understanding of which continues to evolve

  • Antimalarial agents are generally safe, effective and clinically useful in almost all patients with systemic lupus erythematosus

  • These drugs offer considerable promise for treating a variety of immune-mediated as well as nonimmune diseases, and have exciting potential

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Role of antimalarial agents in TLR-mediated innate immune pathways in SLE.
Figure 3: Summary of TLR-independent mechanisms of antimalarial agents.

Similar content being viewed by others

References

  1. Wallace, D. J. The history of antimalarials. Lupus 5 (Suppl. 1), S2–S3 (1996).

    Article  PubMed  Google Scholar 

  2. Knox, C. et al. DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res. 39, D1035–D1041 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Tett, S. E., McLachlan, A. J., Cutler, D. J. & Day, R. O. Pharmacokinetics and pharmacodynamics of hydroxychloroquine enantiomers in patients with rheumatoid arthritis receiving multiple doses of racemate. Chirality 6, 355–359 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Furst, D. E. Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus 5 (Suppl. 1), S11–S15 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Scherbel, A. L., Schuchter, S. L. & Harrison, J. W. Comparison of effects of two antimalarial agents, hydroxychloroquine sulfate and chloroquine phosphate, in patients with rheumatoid arthitis. Cleve. Clin. Q. 24, 98–104 (1957).

    Article  CAS  PubMed  Google Scholar 

  6. Block, J. A. Hydroxychloroquine and retinal safety. Lancet 351, 771 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Costedoat-Chalumeau, N. et al. Low blood concentration of hydroxychloroquine is a marker for and predictor of disease exacerbations in patients with systemic lupus erythematosus. Arthritis Rheum. 54, 3284–3290 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Costedoat-Chalumeau, N. et al. Very low blood hydroxychloroquine concentration as an objective marker of poor adherence to treatment of systemic lupus erythematosus. Ann. Rheum. Dis. 66, 821–824 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wallace, D. J. Antimalarials—the 'real' advance in lupus. Lupus 10, 385–387 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Fox, R. I. Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin. Arthritis Rheum. 23, 82–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Wallace, D. J., Linker-Israeli, M., Hyun, S., Klinenberg, J. R. & Stecher, V. The effect of hydroxychloroquine therapy on serum levels of immunoregulatory molecules in patients with systemic lupus erythematosus. J. Rheumatol. 21, 375–376 (1994).

    CAS  PubMed  Google Scholar 

  12. Wozniacka, A., Lesiak, A., Narbutt, J., McCauliffe, D. P. & Sysa-Jedrzejowska, A. Chloroquine treatment influences proinflammatory cytokine levels in systemic lupus erythematosus patients. Lupus 15, 268–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Jang, C. H., Choi, J. H., Byun, M. S. & Jue, D. M. Chloroquine inhibits production of TNF-α, IL-1β and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology (Oxford) 45, 703–710 (2006).

    Article  CAS  Google Scholar 

  14. Wozniacka, A. et al. The influence of antimalarial treatment on IL-1β, IL-6 and TNF-α mRNA expression on UVB-irradiated skin in systemic lupus erythematosus. Br. J. Dermatol. 159, 1124–1130 (2008).

    CAS  PubMed  Google Scholar 

  15. Napirei, M. et al. Features of systemic lupus erythematosus in DNase1-deficient mice. Nat. Genet. 25, 177–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Chitrabamrung, S., Rubin, R. L. & Tan, E. M. Serum deoxyribonuclease I and clinical activity in systemic lupus erythematosus. Rheumatol. Int. 1, 55–60 (1981).

    Article  CAS  PubMed  Google Scholar 

  17. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Blasius, A. L. & Beutler, B. Intracellular Toll-like receptors. Immunity 32, 305–315 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Vallin, H., Blomberg, S., Alm, G. V., Cederblad, B. & Ronnblom, L. Patients with systemic lupus erythematosus (SLE) have a circulating inducer of interferon-α (IFN-α) production acting on leucocytes resembling immature dendritic cells. Clin. Exp. Immunol. 115, 196–202 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ronnblom, L. & Alm, G. V. The natural interferon-α producing cells in systemic lupus erythematosus. Hum. Immunol. 63, 1181–1193 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20. (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bird, A. P., Taggart, M. H., Nicholls, R. D. & Higgs, D. R. Non-methylated CpG-rich islands at the human α-globin locus: implications for evolution of the α-globin pseudogene. Embo J. 6, 999–1004 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cornelie, S. et al. Direct evidence that Toll-like receptor 9 (TLR9) functionally binds plasmid DNA by specific cytosine–phosphate–guanine motif recognition. J. Biol. Chem. 279, 15124–15129 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Hong, Z. et al. Chloroquine protects mice from challenge with CpG ODN and LPS by decreasing proinflammatory cytokine release. Int. Immunopharmacol. 4, 223–234 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Macfarlane, D. E. & Manzel, L. Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J. Immunol. 160, 1122–1131 (1998).

    CAS  PubMed  Google Scholar 

  26. Vollmer, J. et al. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J. Exp. Med. 202, 1575–1585 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Bouteiller, O. et al. Recognition of double-stranded RNA by human Toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH. J. Biol. Chem. 280, 38133–38145 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Ewald, S. E. et al. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456, 658–662 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuznik, A. et al. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J. Immunol. 186, 4794–4804 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Furukawa, F., Kashihara-Sawami, M., Lyons, M. B. & Norris, D. A. Binding of antibodies to the extractable nuclear antigens SS-A/Ro and SS-B/La is induced on the surface of human keratinocytes by ultraviolet light (UVL): implications for the pathogenesis of photosensitive cutaneous lupus. J. Invest. Dermatol. 94, 77–85 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Shaffer, B., Cahn, M. M. & Levy, E. J. Absorption of antimalarial drugs in human skin; spectroscopic and chemical analysis in epidermis and corium. J. Invest. Dermatol. 30, 341–345 (1958).

    Article  CAS  PubMed  Google Scholar 

  32. Nguyen, T. Q., Capra, J. D. & Sontheimer, R. D. 4-aminoquinoline antimalarials enhance UV-B induced c-Jun transcriptional activation. Lupus 7, 148–153 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Wallace, D. J., Metzger, A. L., Stecher, V. J., Turnbull, B. A. & Kern, P. A. Cholesterol-lowering effect of hydroxychloroquine in patients with rheumatic disease: reversal of deleterious effects of steroids on lipids. Am. J. Med. 89, 322–326 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Goldstein, J. L., Brunschede, G. Y. & Brown, M. S. Inhibition of proteolytic degradation of low density lipoprotein in human fibroblasts by chloroquine, concanavalin A, and Triton WR 1339. J. Biol. Chem. 250, 7854–7862 (1975).

    CAS  PubMed  Google Scholar 

  35. Lange, Y., Duan, H. & Mazzone, T. Cholesterol homeostasis is modulated by amphiphiles at transcriptional and post-transcriptional loci. J. Lipid Res. 37, 534–539 (1996).

    CAS  PubMed  Google Scholar 

  36. Gu, J. Q. et al. A Toll-like receptor 9-mediated pathway stimulates perilipin 3 (TIP47) expression and induces lipid accumulation in macrophages. Am. J. Physiol. Endocrinol. Metab. 299, E593–E600 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Tobias, P. & Curtiss, L. K. Thematic review series: the immune system and atherogenesis. Paying the price for pathogen protection: Toll receptors in atherogenesis. J. Lipid Res. 46, 404–411 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Lesiak, A. et al. Systematic administration of chloroquine in discoid lupus erythematosus reduces skin lesions via inhibition of angiogenesis. Clin. Exp. Dermatol. 34, 570–575 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Pinhal-Enfield, G. et al. An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A2A receptors. Am. J. Pathol. 163, 711–721 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Espinola, R. G., Pierangeli, S. S., Gharavi, A. E. & Harris, E. N. Hydroxychloroquine reverses platelet activation induced by human IgG antiphospholipid antibodies. Thromb. Haemost. 87, 518–522 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Rand, J. H. et al. Hydroxychloroquine protects the annexin A5 anticoagulant shield from disruption by antiphospholipid antibodies: evidence for a novel effect for an old antimalarial drug. Blood 115, 2292–2299 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Woessner, J. F. Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. Faseb J. 5, 2145–2154 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Stuhlmeier, K. M. & Pollaschek, C. Quinacrine but not chloroquine inhibits PMA induced upregulation of matrix metalloproteinases in leukocytes: quinacrine acts at the transcriptional level through a PLA2-independent mechanism. J. Rheumatol. 33, 472–480 (2006).

    CAS  PubMed  Google Scholar 

  44. Lesiak, A. et al. Effect of chloroquine phosphate treatment on serum MMP-9 and TIMP-1 levels in patients with systemic lupus erythematosus. Lupus 19, 683–688 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Merrell, M. A. et al. Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol. Cancer Res. 4, 437–447 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Lullmann-Rauch, R., Pods, R. & von Witzendorff, B. The antimalarials quinacrine and chloroquine induce weak lysosomal storage of sulphated glycosaminoglycans in cell culture and in vivo. Toxicology 110, 27–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Toubi, E. et al. The reduction of serum B-lymphocyte activating factor levels following quinacrine add-on therapy in systemic lupus erythematosus. Scand. J. Immunol. 63, 299–303 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Ehsanian, R., Van Waes, C. & Feller, S. M. Beyond DNA binding—a review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers. Cell Commun. Signal. 9, 13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. [No authors listed] A randomized study of the effect of withdrawing hydroxychloroquine sulfate in systemic lupus erythematosus. The Canadian Hydroxychloroquine Study Group. N. Engl. J. Med. 324, 150–154 (1991).

  50. Molad, Y. et al. Protective effect of hydroxychloroquine in systemic lupus erythematosus. Prospective long-term study of an Israeli cohort. Lupus 11, 356–361 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Fessler, B. J. et al. Systemic lupus erythematosus in three ethnic groups: XVI. Association of hydroxychloroquine use with reduced risk of damage accrual. Arthritis Rheum. 52, 1473–1480 (2005).

    Article  PubMed  Google Scholar 

  52. Alarcon, G. S. et al. Effect of hydroxychloroquine on the survival of patients with systemic lupus erythematosus: data from LUMINA, a multiethnic US cohort (LUMINA L). Ann. Rheum. Dis. 66, 1168–1172 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ruiz-Irastorza, G. et al. Effect of antimalarials on thrombosis and survival in patients with systemic lupus erythematosus. Lupus 15, 577–583 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. James, J. A. et al. Hydroxychloroquine sulfate treatment is associated with later onset of systemic lupus erythematosus. Lupus 16, 401–409 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Shinjo, S. K. et al. Antimalarial treatment may have a time-dependent effect on lupus survival: data from a multinational Latin American inception cohort. Arthritis Rheum. 62, 855–862 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Pons-Estel, G. J. et al. Possible protective effect of hydroxychloroquine on delaying the occurrence of integument damage in lupus: LXXI, data from a multiethnic cohort. Arthritis Care Res. (Hoboken) 62, 393–400 (2010).

    Article  Google Scholar 

  57. Wallace, D. J. Does hydroxychloroquine sulfate prevent clot formation in systemic lupus erythematosus? Arthritis Rheum. 30, 1435–1436 (1987).

    Article  CAS  PubMed  Google Scholar 

  58. Ho, K. T. et al. Systemic lupus erythematosus in a multiethnic cohort (LUMINA): XXVIII. Factors predictive of thrombotic events. Rheumatology (Oxford) 44, 1303–1307 (2005).

    Article  CAS  Google Scholar 

  59. Sisó, A. et al. Previous antimalarial therapy in patients diagnosed with lupus nephritis: influence on outcomes and survival. Lupus 17, 281–288 (2008).

    Article  PubMed  Google Scholar 

  60. Kaiser, R., Cleveland, C. M. & Criswell, L. A. Risk and protective factors for thrombosis in systemic lupus erythematosus: results from a large, multi-ethnic cohort. Ann. Rheum. Dis. 68, 238–241 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Tektonidou, M. G., Laskari, K., Panagiotakos, D. B. & Moutsopoulos, H. M. Risk factors for thrombosis and primary thrombosis prevention in patients with systemic lupus erythematosus with or without antiphospholipid antibodies. Arthritis Rheum. 61, 29–36 (2009).

    Article  PubMed  Google Scholar 

  62. Jung, H. et al. The protective effect of antimalarial drugs on thrombovascular events in systemic lupus erythematosus. Arthritis Rheum. 62, 863–868 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Petri, M., Lakatta, C., Magder, L. & Goldman, D. Effect of prednisone and hydroxychloroquine on coronary artery disease risk factors in systemic lupus erythematosus: a longitudinal data analysis. Am. J. Med. 96, 254–259 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Kavanaugh, A., Adams-Huet, B., Jain, R., Denke, M. & McFarlin, J. Hydroxychloroquine effects on lipoprotein profiles (the HELP trial): a double-blind, randomized, placebo-controlled, pilot study in patients with systemic lupus erythematosus. J. Clin. Rheumatol. 3, 3–8 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Borba, E. F. & Bonfa, E. Longterm beneficial effect of chloroquine diphosphate on lipoprotein profile in lupus patients with and without steroid therapy. J. Rheumatol. 28, 780–785 (2001).

    CAS  PubMed  Google Scholar 

  66. Petri, M. Hydroxychloroquine use in the Baltimore Lupus Cohort: effects on lipids, glucose and thrombosis. Lupus 5 (Suppl. 1), S16–S22 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Pons-Estel, G. J. et al. Protective effect of hydroxychloroquine on renal damage in patients with lupus nephritis: LXV, data from a multiethnic US cohort. Arthritis Rheum. 61, 830–839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pons-Estel, G. J. et al. Anti-malarials exert a protective effect while Mestizo patients are at increased risk of developing SLE renal disease: data from a Latin-American cohort. Rheumatology (Oxford) http://dx.doi.org/10.1093/rheumatology/ker514.

  69. Ruiz-Irastorza, G. et al. Predictors of major infections in systemic lupus erythematosus. Arthritis Res. Ther. 11, R109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ruiz-Irastorza, G., Ramos-Casals, M., Brito-Zeron, P. & Khamashta, M. A. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann. Rheum. Dis. 69, 20–28 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Schmajuk, G., Yazdany, J., Trupin, L. & Yelin, E. Hydroxychloroquine treatment in a community-based cohort of patients with systemic lupus erythematosus. Arthritis Care Res. (Hoboken) 62, 386–392 (2010).

    Article  Google Scholar 

  72. Ruzicka, T., Sommerburg, C., Goerz, G., Kind, P. & Mensing, H. Treatment of cutaneous lupus erythematosus with acitretin and hydroxychloroquine. Br. J. Dermatol. 127, 513–518 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Cavazzana, I. et al. Treatment of lupus skin involvement with quinacrine and hydroxychloroquine. Lupus 18, 735–739 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Chang, A. Y. et al. Response to antimalarial agents in cutaneous lupus erythematosus: a prospective analysis. Arch. Dermatol. 147, 1261–1267 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rahman, P., Gladman, D. D. & Urowitz, M. B. Smoking interferes with efficacy of antimalarial therapy in cutaneous lupus. J. Rheumatol. 25, 1716–1719 (1998).

    CAS  PubMed  Google Scholar 

  76. Jewell, M. L. & McCauliffe, D. P. Patients with cutaneous lupus erythematosus who smoke are less responsive to antimalarial treatment. J. Am. Acad. Dermatol. 42, 983–987 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Kreuter, A. et al. Lupus erythematosus tumidus: response to antimalarial treatment in 36 patients with emphasis on smoking. Arch. Dermatol. 145, 244–248 (2009).

    CAS  PubMed  Google Scholar 

  78. Leroux, G. et al. Relationship between blood hydroxychloroquine and desethylchloroquine concentrations and cigarette smoking in treated patients with connective tissue diseases. Ann. Rheum. Dis. 66, 1547–1548 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wright, J. L., Tai, H., Wang, R., Wang, X. & Churg, A. Cigarette smoke upregulates pulmonary vascular matrix metalloproteinases via TNF-α signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L125–L133 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Lim, S. et al. Balance of matrix metalloprotease-9 and tissue inhibitor of metalloprotease-1 from alveolar macrophages in cigarette smokers. Regulation by interleukin-10. Am. J. Respir. Crit. Care Med. 162, 1355–1360 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Bermudez, E. A., Rifai, N., Buring, J. E., Manson, J. E. & Ridker, P. M. Relation between markers of systemic vascular inflammation and smoking in women. Am. J. Cardiol. 89, 1117–1119 (2002).

    Article  PubMed  Google Scholar 

  82. Lardet, D. et al. Effect of smoking on the effectiveness of antimalarial drugs for cutaneous lesions of patients with lupus: assessment in a prospective study [French]. Rev. Med. Interne 25, 786–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Wahie, S. et al. Clinical and pharmacogenetic influences on response to hydroxychloroquine in discoid lupus erythematosus: a retrospective cohort study. J. Invest. Dermatol. 131, 1981–1986 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Turchin, I., Bernatsky, S., Clarke, A. E., St-Pierre, Y. & Pineau, C. A. Cigarette smoking and cutaneous damage in systemic lupus erythematosus. J. Rheumatol. 36, 2691–2693 (2009).

    Article  PubMed  Google Scholar 

  85. Moghadam-Kia, S. et al. Cross-sectional analysis of a collaborative Web-based database for lupus erythematosus-associated skin lesions: prospective enrollment of 114 patients. Arch. Dermatol. 145, 255–260 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Piette, E. W. et al. Impact of smoking in cutaneous lupus erythematosus. Arch. Dermatol. 148, 317–322 (2012).

    Article  PubMed  Google Scholar 

  87. Parke, A. Antimalarial drugs and pregnancy. Am. J. Med. 85, 30–33 (1988).

    Article  CAS  PubMed  Google Scholar 

  88. Parke, A. & West, B. Hydroxychloroquine in pregnant patients with systemic lupus erythematosus. J. Rheumatol. 23, 1715–1718 (1996).

    CAS  PubMed  Google Scholar 

  89. Buchanan, N. M. et al. Hydroxychloroquine and lupus pregnancy: review of a series of 36 cases. Ann. Rheum. Dis. 55, 486–488 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Clowse, M. E., Magder, L., Witter, F. & Petri, M. Hydroxychloroquine in lupus pregnancy. Arthritis Rheum. 54, 3640–3647 (2006).

    Article  PubMed  Google Scholar 

  91. Izmirly, P. M. et al. Evaluation of the risk of anti-SSA/Ro-SSB/La antibody-associated cardiac manifestations of neonatal lupus in fetuses of mothers with systemic lupus erythematosus exposed to hydroxychloroquine. Ann. Rheum. Dis. 69, 1827–1830 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Levy, R. A. et al. Hydroxychloroquine (HCQ) in lupus pregnancy: double-blind and placebo-controlled study. Lupus 10, 401–404 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Costedoat-Chalumeau, N., Amoura, Z., Huong, D. L., Lechat, P. & Piette, J. C. Safety of hydroxychloroquine in pregnant patients with connective tissue diseases. Review of the literature. Autoimmun. Rev. 4, 111–115 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Wallace, D. J. in Dubois Lupus Erythematosus 7th edn (eds Wallace, D. J. & Hahn, B. H.) 1152–1176 (Lippincott Williams & Wilkins, Philadelphia, 2007).

    Google Scholar 

  95. Van Beek, M. J. & Piette, W. W. Antimalarials. Dermatol. Clin. 19, 147–160, ix (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Marmor, M. F., Kellner, U., Lai, T. Y., Lyons, J. S. & Mieler, W. F. Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy. Ophthalmology 118, 415–422 (2011).

    Article  PubMed  Google Scholar 

  97. Venuturupalli, S. R., Gudsoorkar, V. S. & Wallace, D. J. Revisiting antimalarials in systemic lupus erythematosus: developments of translational clinical interest. J. Rheumatol. (in press).

  98. Wallace, D. J. Advances in drug therapy for systemic lupus erythematosus. BMC Med. 8, 77 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wozniacka, A., Carter, A. & McCauliffe, D. P. Antimalarials in cutaneous lupus erythematosus: mechanisms of therapeutic benefit. Lupus 11, 71–81 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Lopez, P., Gomez, J., Mozo, L., Gutierrez, C. & Suarez, A. Cytokine polymorphisms influence treatment outcomes in SLE patients treated with antimalarial drugs. Arthritis Res. Ther. 8, R42 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Collinge, J. et al. Safety and efficacy of quinacrine in human prion disease (PRION-1 study): a patient-preference trial. Lancet Neurol. 8, 334–344 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gurova, K. New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Future Oncol. 5, 1685–1704 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Adelusi, S. A. & Salako, L. A. Tissue and blood concentrations of chloroquine following chronic administration in the rat. J. Pharm. Pharmacol. 34, 733–735 (1982).

    Article  CAS  PubMed  Google Scholar 

  104. Ronnblom, L., Eloranta, M. L. & Alm, G. V. The type I interferon system in systemic lupus erythematosus. Arthritis Rheum. 54, 408–420 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Aman, M. J. et al. Interferon-α stimulates production of interleukin-10 in activated CD4+ T cells and monocytes. Blood 87, 4731–4736 (1996).

    CAS  PubMed  Google Scholar 

  106. Ronnblom, L., Alm, G. V. & Eloranta, M. L. The type I interferon system in the development of lupus. Semin. Immunol. 23, 113–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D. J. Wallace, V. S. Gudsoorkar and S. R. Venuturupalli researched the data for the article. All authors provided a substantial contribution to discussions of the content and contributed equally to writing the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Daniel J. Wallace.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, D., Gudsoorkar, V., Weisman, M. et al. New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. Nat Rev Rheumatol 8, 522–533 (2012). https://doi.org/10.1038/nrrheum.2012.106

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing