Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anti-CCP antibodies: the past, the present and the future

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease characterized by autoantibodies against citrullinated antigens. The importance of citrulline for the epitopes bound by these autoantibodies, referred to as ACPA (anti-citrullinated peptide/protein antibodies), was first described in 1998. In addition to citrullinated proteins, cyclic citrullinated peptides (CCP) can also be used as test substrates for detecting ACPA. The standard test for these antibodies is the second-generation CCP (CCP2) test, which is one of the best in terms of sensitivity and specificity. The generation of ACPA is an early event in the disease course, and is dependent on the presence of certain MHC class II alleles. ACPA in the inflamed synovium have been shown to associate with citrullinated antigens to form immune complexes, resulting in progression of the inflammatory process. The involvement of ACPA in the chronicity of RA is probably the reason why ACPA-positive patients have a more erosive disease course than ACPA-negative patients. The presence of ACPA has been included in the 2010 RA classification criteria. Thus, it is important to further standardize ACPA testing, for example by including an internal serum standard, which may lead to a better distinction between low and high ACPA levels.

Key Points

  • Anti-citrullinated peptide/protein antibodies (ACPA) are present in early disease, and are highly specific for rheumatoid arthritis (RA)

  • Data from the literature show that the second-generation anti-cyclic citrullinated peptide antibody (CCP2) test is one of the best tools for detecting ACPA

  • The CCP2 test enables the clinician to distinguish two subclasses of patients with early RA (ACPA-positive and ACPA-negative), each with their own genetic background and future disease course

  • ACPA have recently been added to the RA classification criteria jointly developed by the American College of Rheumatology and the European League Against Rheumatism

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical immunofluorescence staining pattern of a buccal mucosa cell by APF-positive RA serum.
Figure 2: Citrullination of proteins.
Figure 3: The hypothesized role of citrullination in RA.

Similar content being viewed by others

References

  1. Schellekens, G. A., de Jong, B. A., van den Hoogen, F. H., van de Putte, L. B. & van Venrooij, W. J. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J. Clin. Invest. 101, 273–281 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schellekens, G. A. et al. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum. 43, 155–163 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. van Gaalen, F. A. et al. Autoantibodies to cyclic citrullinated peptides predict progression to rheumatoid arthritis in patients with undifferentiated arthritis: a prospective cohort study. Arthritis Rheum. 50, 709–715 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Rantapaa-Dahlqvist, S. et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48, 2741–2749 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. van Venrooij, W. J., Zendman, A. J. & Pruijn, G. J. Autoantibodies to citrullinated antigens in (early) rheumatoid arthritis. Autoimmun. Rev. 6, 37–41 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Avouac, J., Gossec, L. & Dougados, M. Diagnostic and predictive value of anti-cyclic citrullinated protein antibodies in rheumatoid arthritis: a systematic literature review. Ann. Rheum. Dis. 65, 845–851 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pruijn, G. J., Wiik, A. & van Venrooij, W. J. The use of citrullinated peptides and proteins for the diagnosis of rheumatoid arthritis. Arthritis Res. Ther. 12, 203 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. van der Woude, D. et al. Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann. Rheum. Dis. 69, 1554–1561 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Aletaha, D. et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62, 2569–2581 (2010).

    Article  PubMed  Google Scholar 

  10. Neogi, T. et al. The 2010 American College of Rheumatology/European League Against Rheumatism classification criteria for rheumatoid arthritis: phase 2 methodological report. Arthritis Rheum. 62, 2582–2591 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. van der Linden, M. P., Knevel, R., Huizinga, T. W. & van der Helm-van Mil, A. H. Classification of rheumatoid arthritis—comparison of the 1987 ACR and 2010 ACR/EULAR criteria. Arthritis Rheum. 63, 37–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Nienhuis, R. L. & Mandema, E. A new serum factor in patients with rheumatoid arthritis: the antiperinuclear factor. Ann. Rheum. Dis. 23, 302–305 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dale, B. A., Holbrook, K. A., Kimball, J. R., Hoff, M. & Sun, T. T. Expression of epidermal keratins and filaggrin during human fetal skin development. J. Cell Biol. 101, 1257–1269 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Hoet, R. M., Boerbooms, A. M., Arends, M., Ruiter, D. J. & van Venrooij, W. J. Antiperinuclear factor, a marker autoantibody for rheumatoid arthritis: colocalisation of the perinuclear factor and profilaggrin. Ann. Rheum. Dis. 50, 611–618 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoet, R. M., Voorsmit, R. A. & van Venrooij, W. J. The perinuclear factor, a rheumatoid arthritis-specific autoantigen, is not present in keratohyalin granules of cultured buccal mucosa cells. Clin. Exp. Immunol. 84, 59–65 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Simon, M. et al. The cytokeratin filament-aggregating protein filaggrin is the target of the so-called “antikeratin antibodies,” autoantibodies specific for rheumatoid arthritis. J. Clin. Invest. 92, 1387–1393 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sebbag, M. et al. The antiperinuclear factor and the so-called antikeratin antibodies are the same rheumatoid arthritis-specific autoantibodies. J. Clin. Invest. 95, 2672–2679 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Girbal-Neuhauser, E. et al. The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deimination of arginine residues. J. Immunol. 162, 585–594 (1999).

    CAS  PubMed  Google Scholar 

  19. Vossenaar, E. R. & van Venrooij, W. J. Anti-CCP antibodies, a highly specific marker for (early) rheumatoid arthritis. Clin. Applied Immunol. Rev. 4, 239–262 (2004).

    Article  CAS  Google Scholar 

  20. Wiik, A. S., van Venrooij, W. J. & Pruijn, G. J. All you wanted to know about anti-CCP but were afraid to ask. Autoimmun. Rev. 10, 90–93 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. van Beers, J. J. B. C., Zendman, A. J. W., van Venrooij, W. J. & Pruijn, G. J. M. in From Etiopathogenesis to the Prediction of Autoimmune Diseases: Relevance of Autoantibodies: Report on the 8th Dresden Symposium on Autoantibodies held in Dresden on September 12–15, 2007. Ch. 7 (eds Conrad, K. et al.) 378–388 (Pabst Science Publishers, Lengerich, 2007).

    Google Scholar 

  22. Vossenaar, E. R. et al. The presence of citrullinated proteins is not specific for rheumatoid synovial tissue. Arthritis Rheum. 50, 3485–3494 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Klareskog, L., Catrina, A. I. & Paget, S. Rheumatoid arthritis. Lancet 373, 659–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Hill, J. A. et al. Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J. Immunol. 171, 538–541 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Hill, J. A. et al. Arthritis induced by posttranslationally modified (citrullinated) fibrinogen in DR4-IE transgenic mice. J. Exp. Med. 205, 967–979 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van der Woude, D. et al. Protection against anti-citrullinated protein antibody-positive rheumatoid arthritis is predominantly associated with HLA-DRB1*1301: a meta-analysis of HLA-DRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in four European populations. Arthritis Rheum. 62, 1236–1245 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. James, E. A. et al. HLA-DR1001 presents “altered-self” peptides derived from joint-associated proteins by accepting citrulline in three of its binding pockets. Arthritis Rheum. 62, 2909–2918 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gyetvai, A. et al. New classification of the shared epitope in rheumatoid arthritis: impact on the production of various anti-citrullinated protein antibodies. Rheumatology (Oxford) 49, 25–33 (2010).

    Article  CAS  Google Scholar 

  29. Berglin, E. et al. A combination of autoantibodies to cyclic citrullinated peptide (CCP) and HLA-DRB1 locus antigens is strongly associated with future onset of rheumatoid arthritis. Arthritis Res. Ther. 6, R303–R308 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Klareskog, L., Wedren, S. & Alfredsson, L. On the origins of complex immune-mediated disease: the example of rheumatoid arthritis. J. Mol. Med. 87, 357–362 (2009).

    Article  PubMed  Google Scholar 

  31. Bang, S. Y. et al. Peptidyl arginine deiminase type IV (PADI4) haplotypes interact with shared epitope regardless of anti-cyclic citrullinated peptide antibody or erosive joint status in rheumatoid arthritis: a case control study. Arthritis Res. Ther. 12, R115 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. van Venrooij, W. J. & Pruijn, G. J. An important step towards completing the rheumatoid arthritis cycle. Arthritis Res. Ther. 10, 117 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Klareskog, L., Ronnelid, J., Lundberg, K., Padyukov, L. & Alfredsson, L. Immunity to citrullinated proteins in rheumatoid arthritis. Annu. Rev. Immunol. 26, 651–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Bang, H. et al. Mutation and citrullination modifies vimentin to a novel autoantigen for rheumatoid arthritis. Arthritis Rheum. 56, 2503–2511 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Mathsson, L. et al. Antibodies against citrullinated vimentin in rheumatoid arthritis: higher sensitivity and extended prognostic value concerning future radiographic progression as compared with antibodies against cyclic citrullinated peptides. Arthritis Rheum. 58, 36–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Vander Cruyssen, B. et al. Diagnostic value of anti-human citrullinated fibrinogen ELISA and comparison with four other anti-citrullinated protein assays. Arthritis Res. Ther. 8, R122 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Bizzaro, N., Tonutti, E., Tozzoli, R. & Villalta, D. Analytical and diagnostic characteristics of 11 2nd- and 3rd-generation immunoenzymatic methods for the detection of antibodies to citrullinated proteins. Clin. Chem. 53, 1527–1533 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Coenen, D., Verschueren, P., Westhovens, R. & Bossuyt, X. Technical and diagnostic performance of 6 assays for the measurement of citrullinated protein/peptide antibodies in the diagnosis of rheumatoid arthritis. Clin. Chem. 53, 498–504 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Dejaco, C. et al. Diagnostic value of antibodies against a modified citrullinated vimentin in rheumatoid arthritis. Arthritis Res. Ther. 8, R119 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mutlu, N. et al. Comparative performance analysis of 4 different anti-citrullinated protein assays in the diagnosis of rheumatoid arthritis. J. Rheumatol. 36, 491–500 (2009).

    Article  PubMed  Google Scholar 

  41. Damjanovska, L. et al. Diagnostic value of anti-MCV antibodies in differentiating early inflammatory arthritis. Ann. Rheum. Dis. 69, 730–732 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Innala, L. et al. Antibodies against mutated citrullinated vimentin are a better predictor of disease activity at 24 months in early rheumatoid arthritis than antibodies against cyclic citrullinated peptides. J. Rheumatol. 35, 1002–1008 (2008).

    PubMed  Google Scholar 

  43. Soos, L. et al. Clinical evaluation of anti-mutated citrullinated vimentin by ELISA in rheumatoid arthritis. J. Rheumatol. 34, 1658–1663 (2007).

    CAS  PubMed  Google Scholar 

  44. Vander Cruyssen, B. et al. Do all anti-citrullinated protein/peptide antibody tests measure the same? Evaluation of discrepancy between anti-citrullinated protein/peptide antibody tests in patients with and without rheumatoid arthritis. Ann. Rheum. Dis. 67, 542–546 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. van der Linden, M. P. et al. Towards a data-driven evaluation of the 2010 ACR/EULAR criteria for rheumatoid arthritis: is it sensible to look at levels of rheumatoid factor? Arthritis Rheum. 63, 1190–1199 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Jansen, L. M. et al. The predictive value of anti-cyclic citrullinated peptide antibodies in early arthritis. J. Rheumatol. 30, 1691–1695 (2003).

    CAS  PubMed  Google Scholar 

  47. Snir, O. et al. Multiple antibody reactivities to citrullinated antigens in sera from patients with rheumatoid arthritis: association with HLA-DRB1 alleles. Ann. Rheum. Dis. 68, 736–743 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Snir, O. et al. Antibodies to several citrullinated antigens are enriched in the joints of rheumatoid arthritis patients. Arthritis Rheum. 62, 44–52 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Ioan-Facsinay, A. et al. Anti-cyclic citrullinated peptide antibodies are a collection of anti-citrullinated protein antibodies and contain overlapping and non-overlapping reactivities. Ann. Rheum. Dis. 70, 188–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Andrade, F. et al. Autocitrullination of human peptidyl arginine deiminase type 4 regulates protein citrullination during cell activation. Arthritis Rheum. 62, 1630–1640 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Halvorsen, E. H. et al. Serum IgG antibodies to peptidylarginine deiminase 4 in rheumatoid arthritis and associations with disease severity. Ann. Rheum. Dis. 67, 414–417 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Halvorsen, EH. et al. Serum IgG antibodies to peptidylarginine deiminase 4 predict radiographic progression in patients with rheumatoid arthritis treated with tumour necrosis factor-alpha blocking agents. Ann. Rheum. Dis. 68, 249–252 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Kolfenbach, J. R. et al. Autoimmunity to peptidyl arginine deiminase type 4 precedes clinical onset of rheumatoid arthritis. Arthritis Rheum. 62, 2633–2639 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ioan-Facsinay, A. et al. Marked differences in fine specificity and isotype usage of the anti-citrullinated protein antibody in health and disease. Arthritis Rheum. 58, 3000–3008 (2008).

    Article  PubMed  Google Scholar 

  55. Schuerwegh, A. J. et al. Evidence for a functional role of IgE anticitrullinated protein antibodies in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 107, 2586–2591 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kokkonen, H. et al. Antibodies of IgG, IgA and IgM isotypes against cyclic citrullinated peptide precede the development of rheumatoid arthritis. Arthritis Res. Ther. 13, R13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vannini, A. et al. Anti-cyclic citrullinated peptide positivity in non-rheumatoid arthritis disease samples: citrulline-dependent or not? Ann. Rheum. Dis. 66, 511–516 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Kakumanu, P. et al. Citrulline dependence of anti-cyclic citrullinated peptide antibodies in systemic lupus erythematosus as a marker of deforming/erosive arthritis. J. Rheumatol. 36, 2682–2690 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Elkayam, O. et al. The anti-cyclic citrullinated peptide response in tuberculosis patients is not citrulline-dependent and sensitive to treatment. Arthritis Res. Ther. 12, R12 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kakumanu, P. et al. Patients with pulmonary tuberculosis are frequently positive for anti-cyclic citrullinated peptide antibodies, but their sera also react with unmodified arginine-containing peptide. Arthritis Rheum. 58, 1576–1581 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nielen, M. M. et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 50, 380–386 (2004).

    Article  PubMed  Google Scholar 

  62. Berglin, E. et al. Radiological outcome in rheumatoid arthritis is predicted by presence of antibodies against cyclic citrullinated peptide before and at disease onset, and by IgA-RF at disease onset. Ann. Rheum. Dis. 65, 453–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Kallberg, H. et al. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am. J. Hum. Genet. 80, 867–875 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. van Beers, J. J. B. C., van Venrooij, W. J. & Pruijn, G. J. M. in From Pathogenesis to Therapy of Autoimmune Diseases: Autoantigens, Autoantibodies, Autoimmunity (eds Conrad, K. et al.) 265–278 (Pabst Science Publishers, Lengerich, 2009).

    Google Scholar 

  65. van der Helm-van Mil, A. H. & Huizinga, T. W. Advances in the genetics of rheumatoid arthritis point to subclassification into distinct disease subsets. Arthritis Res. Ther. 10, 205–212 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Cader, M. Z., Filer, A. D., Buckley, C. D. & Raza, K. The relationship between the presence of anti-cyclic citrullinated peptide antibodies and clinical phenotype in very early rheumatoid arthritis. BMC. Musculoskelet. Disord. 11, 187–191 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Pedersen, M. et al. Environmental risk factors differ between rheumatoid arthritis with and without auto-antibodies against cyclic citrullinated peptides. Arthritis Res. Ther. 8, R133 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. López-Longo, F. J., Sánchez-Ramón, S. & Carreño, L. The value of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis: do they imply new risk factors? Drug News Perspect. 22, 543–548 (2009).

    Article  PubMed  Google Scholar 

  69. van Dongen, H. et al. Efficacy of methotrexate treatment in patients with probable rheumatoid arthritis: a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 56, 1424–1432 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Mikuls, T. R. et al. Anti-citrullinated protein antibody (ACPA) in rheumatoid arthritis: influence of an interaction between HLA-DRB1 shared epitope and a deletion polymorphism in glutathione S-transferase in a cross-sectional study. Arthritis Res. Ther. 12, R213 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kallberg, H. et al. Smoking is a major preventable risk factor for rheumatoid arthritis: estimations of risks after various exposures to cigarette smoke. Ann. Rheum. Dis. 70, 508–511 (2011).

    Article  PubMed  Google Scholar 

  72. Bang, S. Y. et al. Smoking increases rheumatoid arthritis susceptibility in individuals carrying the HLA-DRB1 shared epitope, regardless of rheumatoid factor or anti-cyclic citrullinated peptide antibody status. Arthritis Rheum. 62, 369–377 (2010).

    CAS  PubMed  Google Scholar 

  73. Vossenaar, E. R. & van Venrooij, W. J. Citrullinated proteins: sparks that may ignite the fire in rheumatoid arthritis. Arthritis Res. Ther. 6, 107–111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bos, W. H., Dijkmans, B. A., Boers, M., van de Stadt, R. J. & van Schaardenburg, D. Effect of dexamethasone on autoantibody levels and arthritis development in patients with arthralgia: a randomised trial. Ann. Rheum. Dis. 69, 571–574 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Mjaavatten, M. D. et al. The likelihood of persistent arthritis increases with the level of anti-citrullinated peptide antibody and immunoglobulin M rheumatoid factor: a longitudinal study of 376 patients with very early undifferentiated arthritis. Arthritis Res. Ther. 12, R76 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kuhn, K. A. et al. Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J. Clin. Invest. 116, 961–973 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Uysal, H. et al. Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis. J. Exp. Med. 206, 449–462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ho, P. P. et al. Autoimmunity against fibrinogen mediates inflammatory arthritis in mice. J. Immunol. 184, 379–390 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Clavel, C. et al. Induction of macrophage secretion of tumor necrosis factor α through Fcγ receptor IIa engagement by rheumatoid arthritis-specific autoantibodies to citrullinated proteins complexed with fibrinogen. Arthritis Rheum. 58, 678–688 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. van Oosterhout, M. et al. Differences in synovial tissue infiltrates between anti-cyclic citrullinated peptide-positive rheumatoid arthritis and anti-cyclic citrullinated peptide-negative rheumatoid arthritis. Arthritis Rheum. 58, 53–60 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Trouw, L. A. et al. Anti-cyclic citrullinated peptide antibodies from rheumatoid arthritis patients activate complement via both the classical and alternative pathways. Arthritis Rheum. 60, 1923–1931 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Sokolove, J., Zhao, X., Chandra, P. E. & Robinson, W. H. Immune complexes containing citrullinated fibrinogen co-stimulate macrophages via Toll-like receptor 4 and Fcγ receptor. Arthritis Rheum. 63, 53–62 (2010).

    Article  CAS  Google Scholar 

  83. Mahdi, H. et al. Specific interaction between genotype, smoking and autoimmunity to citrullinated α-enolase in the etiology of rheumatoid arthritis. Nat. Genet. 41, 1319–1324 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Visser, K. et al. A matrix risk model for the prediction of rapid radiographic progression in patients with rheumatoid arthritis receiving different dynamic treatment strategies: post hoc analyses from the BeSt study. Ann. Rheum. Dis. 69, 1333–1337 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Wegner, N. et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and alpha-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 62, 2662–2672 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mangat, P., Wegner, N., Venables, P. J. & Potempa, J. Bacterial and human peptidylarginine deiminases: targets for inhibiting the autoimmune response in rheumatoid arthritis? Arthritis Res. Ther. 12, 209–217 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Edwards, J. C. & Cambridge, G. Sustained improvement in rheumatoid arthritis following a protocol designed to deplete B lymphocytes. Rheumatology (Oxford) 40, 205–211 (2001).

    Article  CAS  Google Scholar 

  88. Cambridge, G. et al. Serologic changes following B lymphocyte depletion therapy for rheumatoid arthritis. Arthritis Rheum. 48, 2146–2154 (2003).

    Article  PubMed  Google Scholar 

  89. Vossenaar, E. R., Zendman, A. J., van Venrooij, W. J. & Pruijn, G. J. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 25, 1106–1118 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work was supported in part by the Dutch Arthritis Association and the Dutch Technology Foundation (STW).

Author information

Authors and Affiliations

Authors

Contributions

All authors took part in researching data for the article. W. J. van Venrooij and G. J. M. Pruijn discussed the content. All authors contributed equally to writing the article and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Walther J. van Venrooij.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Venrooij, W., van Beers, J. & Pruijn, G. Anti-CCP antibodies: the past, the present and the future. Nat Rev Rheumatol 7, 391–398 (2011). https://doi.org/10.1038/nrrheum.2011.76

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.76

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research