Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunotherapy of myositis: issues, concerns and future prospects

Abstract

The main inflammatory myopathies within the myositis group include polymyositis, dermatomyositis and inclusion-body myositis (IBM). Although potentially treatable, various practical issues have an impact on the response of these conditions to therapy. The most common reason for therapeutic failure is that the treatment targets the wrong disease, often owing to poor distinction of polymyositis from difficult-to-treat mimics such as sporadic IBM, necrotizing myopathies and inflammatory dystrophies. Evidence from uncontrolled studies suggests that polymyositis and dermatomyositis respond to treatment with prednisone at least to some degree. Empirically, adding an immunosuppressive drug might offer a 'steroid-sparing' effect or perhaps additional benefit. Intravenous immunoglobulin is proven effective as a second-line agent in patients with dermatomyositis and also seems to be effective for those with polymyositis, but offers only minimal and transient benefit to a small proportion of patients with IBM. Small, uncontrolled series suggest other agents such as rituximab or tacrolimus might offer some benefit in disease refractory to the aforementioned therapies, although IBM is resistant to most therapies. Novel agents are emerging as potential treatment options for all forms of myositis. This Review highlights common pitfalls in therapy, discusses emerging new therapies, and provides a practical therapeutic algorithm.

Key Points

  • Correct diagnosis of myositis subtype and monitoring of response to therapy with objective means that document changes in muscle strength are integral to the effective treatment of myositis

  • Immunotherapy for polymyositis and dermatomyositis primarily involves corticosteroids and might incorporate the addition of other immunosuppressive agents

  • Intravenous immunoglobulin might be effective in patients with disease refractory to first-line immunotherapy

  • Inclusion-body myositis has a complex disease mechanism and can be difficult to treat with conventional immunotherapy

  • Various factors in the immunopathogenesis of myositis represent targets for future therapeutic interventions

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Therapeutic targets in the immunopathogenesis of myositis.
Figure 2: Algorithm of a suggested step-by-step approach to the treatment of myositis by subtype.

Similar content being viewed by others

References

  1. Dalakas, M. C. Polymyositis, dermatomyositis and inclusion-body myositis. N. Engl. J. Med. 325, 1487–1498 (1991).

    Article  CAS  Google Scholar 

  2. Engel, A. G. & Hohlfeld, R. in Myology 3rd edn (eds Engel, A. G. & Franzini-Armstrong, C.) 1321–1366 (McGraw-Hill, New York, 2004).

    Google Scholar 

  3. Mastaglia, F. L. & Phillips, B. A. Idiopathic inflammatory myopathies: epidemiology, classification and diagnostic criteria. Rheum. Dis. Clin. North Am. 28, 723–741 (2002).

    Article  Google Scholar 

  4. Dalakas, M. C. & Hohlfeld, R. Polymyositis and dermatomyositis. Lancet 362, 971–982 (2003).

    Article  CAS  Google Scholar 

  5. Dalakas, M. C. Inflammatory disorders of muscle: progress in polymyositis, dermatomyositis and inclusion body myositis. Curr. Opin. Neurol. 17, 561–567 (2004).

    Article  CAS  Google Scholar 

  6. Antiochos, B. B. et al. Malignancy is associated with dermatomyositis but not polymyositis in Northern New England, USA. J. Rheumatol. 36, 2704–2710 (2009).

    Article  Google Scholar 

  7. Sekul, E. A. & Dalakas, M. C. Inclusion body myositis: new concepts. Semin. Neurol. 13, 256–263 (1993).

    Article  CAS  Google Scholar 

  8. Needham, M. & Mastaglia, F. L. Inclusion body myositis: current pathogenetic concepts and diagnostic and therapeutic approaches. Lancet Neurol. 6, 620–631 (2007).

    Article  Google Scholar 

  9. Needham, M. & Mastaglia, F. L. Sporadic inclusion body myositis: a continuing puzzle. Neuromuscul. Disord. 18, 6–16 (2008).

    Article  CAS  Google Scholar 

  10. Griggs, R. C. et al. Inclusion body myositis and myopathies. Ann. Neurol. 38, 705–713 (1995).

    Article  CAS  Google Scholar 

  11. Greenberg, S. A. et al. Interferon-α/β-mediated innate immune mechanisms in dermatomyositis. Ann. Neurol. 57, 664–678 (2005).

    Article  CAS  Google Scholar 

  12. Askanas, V. & Engel, W. K. Sporadic inclusion-body myositis and hereditary inclusion-body myopathies: current concepts of diagnosis and pathogenesis. Curr. Opin. Rheumatol. 10, 530–542 (1998).

    Article  CAS  Google Scholar 

  13. Mendel, J. R., Sahenk, Z., Gales, L. & Paul, L. Amyloid filaments in inclusion body myositis. Novel findings provide insight into nature of filaments. Arch. Neurol. 48, 1229–1234 (1991).

    Article  Google Scholar 

  14. Dalakas, M. C. Sporadic inclusion body myositis: diagnosis, pathogenesis and therapeutic strategies. Nat. Clin. Prac. Neurol. 2, 437–447 (2006).

    Article  CAS  Google Scholar 

  15. Dalakas, M. C. Toxic and drug-induced myopathies. J. Neurol. Neurosurg. Psych. 80, 832–838 (2009).

    Article  CAS  Google Scholar 

  16. Karpati, G. & Carpenter, S. Pathology of the inflammatory myopathies. Baillière's Clin. Neurol. 2, 527–556 (1993).

    CAS  Google Scholar 

  17. Emslie-Smith, A. M., Arahata, K. & Engel, A. G. Major histocompatibility complex class I antigen expression, immunologicalization of interferon subtypes, and T cell-mediated cytotoxicity in myopathies. Hum. Pathol. 20, 224–231 (1989).

    Article  CAS  Google Scholar 

  18. Karpati, G., Pouliot, Y. & Carpenter, S. Expression of immunoreactive major histocompatability complex products in human skeletal muscles. Ann. Neurol. 23, 64–72 (1988).

    Article  CAS  Google Scholar 

  19. Chahin, N. & Engel, A. G. Correlation of muscle biopsy, clinical course, and outcome in PM and sporadic IBM. Neurology 70, 418–424 (2008).

    Article  Google Scholar 

  20. Blume, G., Pestronk, A., Frank, B. & Johns, D. R. Polymyositis with cytochrome oxidase negative muscle fibres. Early quadriceps weakness and poor response to immunosuppressive therapy. Brain 120, 39–45 (1997).

    Article  Google Scholar 

  21. Dalakas, M. C. Therapeutic approaches in patients with inflammatory myopathies. Semin. Neurol. 23, 199–206 (2003).

    Article  Google Scholar 

  22. Miller, F. W. et al. Controlled trial of plasma exchange and leukopheresis in patients with polymyositis and dermatomyositis. N. Engl. J. Med. 326, 1380–1384 (1992).

    Article  CAS  Google Scholar 

  23. Kissel, J. T., Mendell, J. R. & Rammohan, K. W. Microvascular deposition of complement membrane attack complex in dermatomyositis. N. Engl. J. Med. 314, 329–334 (1986).

    Article  CAS  Google Scholar 

  24. Emslie-Smith, A. M. & Engel, A. G. Microvascular changes in early and advanced dermatomyositis: a quantitative study. Ann. Neurol. 27, 343–356 (1990).

    Article  CAS  Google Scholar 

  25. Dalakas, M. C. Immunopathogenesis of inflammatory myopathies. Ann. Neurol. 37 (Suppl. 1), S74–S86 (1995).

    Article  Google Scholar 

  26. López de Padilla, C. M. et al. Plasmacytoid dendritic cells in inflamed muscles of patients with juvenile dermatomyositis. Arthritis Rheum. 56, 1658–1668 (2007).

    Article  Google Scholar 

  27. Tews, D. S. & Goebel, H. H. Expression of cell adhesion molecules in inflammatory myopathies. J. Neuroimmunol. 59, 185–194 (1995).

    Article  CAS  Google Scholar 

  28. De Bleecker, J. L. & Engel, A. G. Expression of cell adhesion molecules in inflammatory myopathies and Duchenne dystrophy. J. Neuropathol. Exp. Neurol. 53, 369–376 (1994).

    Article  CAS  Google Scholar 

  29. De Bleecker, J. L., De Paepe, B., Vanwalleghem, I. E. & Schröder, J. M. Differential expression of chemokines in inflammatory myopathies. Neurology 58, 1779–1785 (2002).

    Article  CAS  Google Scholar 

  30. Civatte, M. et al. Expression of the beta chemokines CCL3, CCL4, CCL5 and their receptors in idiopathic inflammatory myopathies. Neuropathol. Appl. Neurobiol. 31, 70–79 (2005).

    Article  CAS  Google Scholar 

  31. Illa, I. et al. Signal transducer and activator of transcription 1 in human muscle: implications in inflammatory myopathies. Am. J. Pathol. 151, 81–88 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dalakas, M. C. Mechanisms of disease: signaling pathways and immunobiology of inflammatory myopathies. Nat. Clin. Pract. Rheumatol. 2, 219–227 (2006).

    Article  CAS  Google Scholar 

  33. Arahata, K. & Engel, A. G. Monoclonal antibody analysis of mononuclear cells in myopathies. I: Quantitation of subsets according to diagnosis and sites of accumulation and demonstration and counts of muscle fibers invaded by T cells. Ann. Neurol. 16, 193–208 (1984).

    Article  CAS  Google Scholar 

  34. Arahata, K. & Engel, A. G. Monoclonal antibody analysis of mononuclear cells in myopathies III Immunoelectron microscopy aspects of cell-mediated muscle fibre injury. Ann. Neurol. 19, 112–125 (1986).

    Article  CAS  Google Scholar 

  35. Goebel, N. et al. Differential expression of perforin in muscle-infiltrating T cells in polymyositis and dermatomyositis. J. Clin. Invest. 97, 2905–2910 (1996).

    Article  Google Scholar 

  36. Bender, A. et al. T cell receptor repertoire in polymyositis: clonal expansion of autoaggressive CD8+ T cells. J. Exp. Med. 181, 1863–1868 (1995).

    Article  CAS  Google Scholar 

  37. Engel, A. G. & Arahata, K. Mononuclear cells in myopathies: quantitation of functionally distinct subsets, recognition of antigen-specific cell-mediated cytotoxicity in some diseases, and implications for the pathogenesis of the different inflammatory myopathies. Hum. Pathol. 17, 704–721 (1986).

    Article  CAS  Google Scholar 

  38. Amemiya, K., Granger, R. P. & Dalakas, M. C. Clonal restriction of T-cell receptor expression by infiltrating lymphocytes in inclusion body myositis persists over time. Studies in repeated muscle biopsies. Brain 123, 2030–2039 (2000).

    Article  Google Scholar 

  39. Hofbauer, M. et al. Clonal tracking of autoaggressive T cells in polymyositis by combining laser microdissection, single-cell PCR, and CDR3-spectratype analysis. Proc. Natl Acad. Sci. USA 100, 4090–4095 (2003).

    Article  CAS  Google Scholar 

  40. Wiendl, H. et al. Muscle fibres and cultured muscle cells express the B7.1/2-related inducible co-stimulatory molecule, ICOSL: implications for the pathogenesis of inflammatory myopathies. Brain 126, 1026–1035 (2003).

    Article  Google Scholar 

  41. Wiendl, H., Hohlfeld, R. & Kieseier, B. C. Immunobiology of muscle: advances in understanding an immunological microenvironment. Trends Immunol. 26, 373–380 (2005).

    Article  CAS  Google Scholar 

  42. Schmidt, J., Rakocevic, G., Raju, R. & Dalakas, M. C. Upregulated inducible co-stimulator (ICOS) and ICOS-ligand in inclusion body myositis muscle: significance for CD8+ T cell cytotoxicity. Brain 127, 1182–1190 (2004).

    Article  Google Scholar 

  43. Schmidt, J. et al. Interrelation of inflammation and APP in sIBM: IL-1β induces accumulation of β-amyloid in skeletal muscle. Brain 131, 1228–1240 (2008).

    Article  Google Scholar 

  44. Targoff, I. N. Autoantibodies and their significance in myositis. Curr. Rheumatol. Rep. 10, 333–340 (2008).

    Article  CAS  Google Scholar 

  45. Dalakas, M. C. Therapeutic targets in patients with inflammatory myopathies: present approaches and a look to the future. Neuromuscul. Disord. 16, 223–236 (2006).

    Article  Google Scholar 

  46. Bunch, T. W. Prednisone and azathioprine for polymyositis: long-term followup. Arthritis Rheum. 24, 45–48 (1981).

    Article  CAS  Google Scholar 

  47. Mastaglia, F. L., Phillips, B. A. & Zilko, P. Treatment of inflammatory myopathies. Muscle Nerve 20, 651–664 (1997).

    Article  CAS  Google Scholar 

  48. Dalakas, M. C. Current treatment of the inflammatory myopathies. Curr. Opin. Rheumatol. 6, 595–601 (1994).

    Article  CAS  Google Scholar 

  49. Dalakas, M. C. et al. A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis. N. Engl. J. Med. 329, 1993–2000 (1993).

    Article  CAS  Google Scholar 

  50. Mastaglia, F. L., Phillips, B. A. & Zilko, P. J. Immunoglobulin therapy in inflammatory myopathies. J. Neurol. Neurosurg. Psychiatry 65, 107–110 (1998).

    Article  CAS  Google Scholar 

  51. Chérin, P. Current therapy for polymyositis and dermatomyositis [French]. Rev. Med. Interne. 29 (Spec. No. 2), 9–14 (2008).

    PubMed  Google Scholar 

  52. Dalakas, M. C. Intravenous immunoglobulin in autoimmune neuromuscular diseases. JAMA 291, 2367–2375 (2004).

    Article  CAS  Google Scholar 

  53. Dalakas, M. C. B cells as therapeutic targets in autoimmune neurological disorders. Nat. Clin. Pract. Neurol. 4, 557–567 (2008).

    Article  CAS  Google Scholar 

  54. Levine, T. D. Rituximab in the treatment of dermatomyositis: an open-label pilot study. Arthritis Rheum. 52, 601–607 (2005).

    Article  CAS  Google Scholar 

  55. Chung, L., Genovese, M. C. & Fiorentino, D. F. A pilot trial of rituximab in the treatment of patients with dermatomyositis. Arch. Dermatol. 143, 763–767 (2007).

    Article  CAS  Google Scholar 

  56. Kaposztas, Z., Etheridge, W. B. & Kahan, B. D. Case report: successful treatment of posttransplant lymphoproliferative disorder and quiescence of dermatomyositis with rituximab and sirolimus. Transplant. Proc. 40, 1744–1746 (2008).

    Article  CAS  Google Scholar 

  57. Oddis, C. V., Sciurba, F. C., Elmagd, K. A. & Starzl, T. E. Tacrolimus in refractory polymyositis with interstitial lung disease. Lancet 353, 1762–1763 (1999).

    Article  CAS  Google Scholar 

  58. Shimojima, Y. et al. Efficacy of tacrolimus in treatment of polymyositis associated with myasthenia gravis. Clin. Rheumatol. 23, 262–265 (2004).

    Article  Google Scholar 

  59. Yamada, A., Ohshima, Y., Omata, N., Yasutomi, M. & Mayumi, M. Steroid-sparing effect of tacrolimus in a patient with juvenile dermatomyositis presenting poor bioavailability of cyclosporine A. Eur. J. Pediatr. 163, 561–562 (2004).

    Article  Google Scholar 

  60. Hohlfeld, R. & Dalakas, M. C. Basic principles of immunotherapy for neurologic diseases. Semin. Neurol. 23, 121–132 (2003).

    Article  Google Scholar 

  61. Wiendl, H. Idiopathic inflammatory myopathies: current and future therapeutic options. Neurotherapeutics 5, 548–557 (2008).

    Article  CAS  Google Scholar 

  62. Hengstman, G. J. et al. Successful treatment of dermatomyositis and polymyositis with anti-tumor necrosis-factor-alpha: preliminary observations. Eur. Neurol. 50, 10–15 (2003).

    Article  CAS  Google Scholar 

  63. Labioche, I. et al. Refractory polymyositis responding to infliximab: extended follow-up. Rheumatology (Oxford) 43, 531–532 (2004).

    Article  CAS  Google Scholar 

  64. Hengstman, G. J., van den Hoogen, F. H. & van Engelen, B. G. Treatment of dermatomyositis and polymyositis with anti-tumor necrosis factor-alpha: long-term follow-up. Eur. Neurol. 52, 61–63 (2004).

    Article  CAS  Google Scholar 

  65. Dastmalchi, M. et al. A high incidence of disease flares in an open pilot study of infliximab in patients with refractory polymyositis. Ann. Rheum. Dis. 67, 1670–1677 (2008).

    Article  CAS  Google Scholar 

  66. US Food and Drug Administration. FDA public health advisory: updated safety information about Raptiva (efalizumab) [http://www.fda.gov/Drugs/DrugSafety/PublicHealthAdvisories/ucm110605.htm] (2009).

  67. Rose, J. W. et al. Daclizumab phase II trial in relapsing and remitting multiple sclerosis: MRI and clinical results. Neurology 69, 785–789 (2007).

    Article  CAS  Google Scholar 

  68. Thomson, B. et al. Alemtuzumab (Campath-1H) for treatment of refractory polymyositis. J. Rheumatol. 35, 2080–2082 (2008).

    Google Scholar 

  69. O'Connor, P. et al. Oral fingolimod (FTY720) in multiple sclerosis: two-year results of a phase II extension study. Neurology 72, 73–79 (2009).

    Article  CAS  Google Scholar 

  70. Basta, M. & Dalakas, M. C. High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J. Clin. Invest. 94, 1729–1735 (1994).

    Article  CAS  Google Scholar 

  71. Dalakas, M. C. Interplay between inflammation and degeneration: using inclusion body myositis to study “neuroinflammation”. Ann. Neurol. 64, 1–3 (2008).

    Article  Google Scholar 

  72. Mowzoon, N., Sussman, A. & Bradley, W. G. Mycophenolate (CellCept) treatment of myasthenia gravis, chronic inflammatory polyneuropathy and inclusion body myositis. J. Neurol. Sci. 185, 119–122 (2001).

    Article  CAS  Google Scholar 

  73. Dalakas, M. C. et al. Treatment of inclusion body myositis with IVIg: a double-blind, placebo-control study. Neurology 48, 712–716 (1997).

    Article  CAS  Google Scholar 

  74. Walter, M. C. et al. High-dose immunoglobulin therapy in sporadic inclusion body myositis: a double-blind, placebo-controlled study. J. Neurol. 247, 22–28 (2000).

    Article  CAS  Google Scholar 

  75. Cherin, P. et al. Intravenous immunoglobulin for dysphagia of inclusion body myositis. Neurology 58, 326 (2002).

    Article  CAS  Google Scholar 

  76. Dalakas, M. C. et al. Effect of alemtuzumab (CAMPATH 1-H) in patients with inclusion body myositis. Brain 132, 1536–1544 (2009).

    Article  Google Scholar 

  77. Verma, A., Bradley, W., Adesina, A. M., Sofferman, R. & Pendlebury, W. W. Inclusion body myositis with cricopharyngeus muscle involvement and severe dysphagia. Muscle Nerve 14, 470–473 (1991).

    Article  CAS  Google Scholar 

  78. Spector, S. A. et al. Safety and efficacy of strength training in patients with sporadic inclusion body myositis. Muscle Nerve 20, 1242–1248 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Charles P. Vega, University of Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author has acted as a consultant for and has received honoraria from Baxter Healthcare, Octapharma and Talecris Biotherapeutics. The Journal Editor J. Buckland and the CME question author C. P. Vega declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalakas, M. Immunotherapy of myositis: issues, concerns and future prospects. Nat Rev Rheumatol 6, 129–137 (2010). https://doi.org/10.1038/nrrheum.2010.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing