Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging MRI methods in rheumatoid arthritis

Abstract

New MRI techniques have been developed to assess not only the static anatomy of synovial hyperplasia, bone changes and cartilage degradation in patients with rheumatoid arthritis (RA), but also the activity of the physiological events that cause these changes. This enables an estimation of the rate of change in the synovium, bone and cartilage as a result of disease activity or in response to therapy. Typical MRI signs of RA in the pre-erosive phase include synovitis, bone marrow edema and subchondral cyst formation. Synovitis can be assessed by T2-weighted imaging, dynamic contrast-enhanced MRI or diffusion tensor imaging. Bone marrow edema can be detected on fluid-sensitive sequences such as short-tau inversion recovery or T2-weighted fast-spin echo sequences. Detection of small bone erosions in the early erosive phase using T1-weighted MRI has sensitivity comparable to CT. Numerous MRI techniques have been developed for quantitative assessment of potentially pathologic changes in cartilage composition that occur before frank morphologic changes. In this Review, we summarize the advances and new directions in the field of MRI, with an emphasis on their current state of development and application in RA.

Key Points

  • The optimal roles of MRI in rheumatoid arthritis (RA) research and clinical practice lie in identifying the early, pre-erosive stages of disease and monitoring therapy

  • MRI signs of synovitis have been validated histologically and clinically both in animal studies and in humans

  • Modern high-field extremity MRI scanners maximize patient comfort without sacrificing image quality, and have been validated against conventional MRI units using the RAMRIS (rheumatoid arthritis magnetic resonance imaging score) system

  • The capability of MRI to quantify outcome measures provides a powerful research tool that can also incorporate pharmacokinetic modeling

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging of anatomical, tissue and cellular changes in synovium, cartilage and bone in RA.
Figure 2: MRI of early RA.
Figure 3: Use of DCE-MRI to assess inflammation.
Figure 4: Kinetic modeling technique to examine the pathophysiology of synovial inflammation in the RA wrist using DCE-MRI-derived data.
Figure 5: DTI in a 42-year-old woman with RA.
Figure 6: Bone erosions in the wrist of an RA patient.
Figure 7: T2 mapping of cartilage.
Figure 8: 23Na MRI of cartilage.

Similar content being viewed by others

References

  1. Taylor, P. C. & Feldmann, M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 578–582 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Maini, R. N. et al. Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. Arthritis Rheum. 54, 2817–2829 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Cohen, S. B. et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 58, 1299–1309 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Lewiecki, E. M. Denosumab update. Curr. Opin. Rheumatol. 21, 369–373 (2009).

    Article  PubMed  Google Scholar 

  5. van den Berg, W. B. & Miossec, P. IL-17 as a future therapeutic target for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 549–553 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Kremer, J. M. et al. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis Rheum. 60, 1895–1905 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Dorner, T. & Burmester, G. R. New approaches of B-cell-directed therapy: beyond rituximab. Curr. Opin. Rheumatol. 20, 263–268 (2008).

    Article  PubMed  Google Scholar 

  8. Dorner, T., Radbruch, A. & Burmester, G. R. B-cell-directed therapies for autoimmune disease. Nat. Rev. Rheumatol. 5, 433–441 (2009).

    Article  PubMed  CAS  Google Scholar 

  9. Eisenberg, R. & Albert, D. B-cell targeted therapies in rheumatoid arthritis and systemic lupus erythematosus. Nat. Clin. Pract. Rheumatol. 2, 20–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Steinberg, J. J., Kincaid, S. B. & Sledge, C. B. Inhibition of cartilage breakdown by hydrocortisone in a tissue culture model of rheumatoid arthritis. Ann. Rheum. Dis. 42, 323–330 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arner, E. C., Harris, R. R., DiMeo, T. M., Collins, R. C. & Galbraith, W. Interleukin-1 receptor antagonist inhibits proteoglycan breakdown in antigen induced but not polycation induced arthritis in the rabbit. J. Rheumatol. 22, 1338–1346 (1995).

    CAS  PubMed  Google Scholar 

  12. Yasuda, T. & Poole, A. R. A fibronectin fragment induces type II collagen degradation by collagenase through an interleukin-1-mediated pathway. Arthritis Rheum. 46, 138–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Yodlowski, M. L. et al. Antibody to interleukin 1 inhibits the cartilage degradative and thymocyte proliferative actions of rheumatoid synovial culture medium. J. Rheumatol. 17, 1600–1607 (1990).

    CAS  PubMed  Google Scholar 

  14. Elliott, S. & Cawston, T. The clinical potential of matrix metalloproteinase inhibitors in the rheumatic disorders. Drugs Aging 18, 87–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Nagase, H. & Kashiwagi, M. Aggrecanases and cartilage matrix degradation. Arthritis Res. Ther. 5, 94–103 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Medicherla, S. et al. A selective p38 alpha mitogen-activated protein kinase inhibitor reverses cartilage and bone destruction in mice with collagen-induced arthritis. J. Pharmacol. Exp. Ther. 318, 132–141 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Catrina, A. I. et al. Anti-tumour necrosis factor (TNF)-alpha therapy (etanercept) down-regulates serum matrix metalloproteinase (MMP)-3 and MMP-1 in rheumatoid arthritis. Rheumatology (Oxford) 41, 484–489 (2002).

    Article  CAS  Google Scholar 

  18. Ranganathan, P. An update on pharmacogenomics in rheumatoid arthritis with a focus on TNF-blocking agents. Curr. Opin. Mol. Ther. 10, 562–567 (2008).

    CAS  PubMed  Google Scholar 

  19. Moran, E. M. et al. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies. Arthritis Res. Ther. 11, R113 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Rannou, F., Francois, M., Corvol, M. T. & Berenbaum, F. Cartilage breakdown in rheumatoid arthritis. Joint Bone Spine 73, 29–36 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. McQueen, F. et al. OMERACT rheumatoid arthritis magnetic resonance imaging studies. Summary of OMERACT 6 MR imaging module. J. Rheumatol. 30, 1387–1392 (2003).

    PubMed  Google Scholar 

  22. McQueen, F. M. et al. Bone edema scored on magnetic resonance imaging scans of the dominant carpus at presentation predicts radiographic joint damage of the hands and feet six years later in patients with rheumatoid arthritis. Arthritis Rheum. 48, 1814–1827 (2003).

    Article  PubMed  Google Scholar 

  23. Schirmer, C. et al. Diagnostic quality and scoring of synovitis, tenosynovitis and erosions in low-field MRI of patients with rheumatoid arthritis: a comparison with conventional MRI. Ann. Rheum. Dis. 66, 522–529 (2007).

    Article  PubMed  Google Scholar 

  24. Østergaard, M. et al. OMERACT rheumatoid arthritis magnetic resonance imaging studies. Core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system. J. Rheumatol. 30, 1385–1386 (2003).

    PubMed  Google Scholar 

  25. Haavardsholm, E. A. et al. Reliability and sensitivity to change of the OMERACT rheumatoid arthritis magnetic resonance imaging score in a multireader, longitudinal setting. Arthritis Rheum. 52, 3860–3867 (2005).

    Article  PubMed  Google Scholar 

  26. Bird, P. et al. A multireader reliability study comparing conventional high-field magnetic resonance imaging with extremity low-field MRI in rheumatoid arthritis. J. Rheumatol. 34, 854–856 (2007).

    PubMed  Google Scholar 

  27. Conaghan, P. G. et al. A multicenter reliability study of extremity-magnetic resonance imaging in the longitudinal evaluation of rheumatoid arthritis. J. Rheumatol. 34, 857–858 (2007).

    PubMed  Google Scholar 

  28. Klarlund, M. et al. Magnetic resonance imaging, radiography, and scintigraphy of the finger joints: one year follow up of patients with early arthritis. Ann. Rheum. Dis. 59, 521–528 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McQueen, F. M. et al. What is the fate of erosions in early rheumatoid arthritis? Tracking individual lesions using x rays and magnetic resonance imaging over the first two years of disease. Ann. Rheum. Dis. 60, 859–868 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. McQueen, F. M. et al. Magnetic resonance imaging of the wrist in early rheumatoid arthritis reveals progression of erosions despite clinical improvement. Ann. Rheum. Dis. 58, 156–163 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jevtic, V. et al. Precontrast and postcontrast (Gd-DTPA) magnetic resonance imaging of hand joints in patients with rheumatoid arthritis. Clin. Radiol. 48, 176–181 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Brennan, P. et al. A simple algorithm to predict the development of radiological erosions in patients with early rheumatoid arthritis: prospective cohort study. BMJ 313, 471–476 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sugimoto, H., Takeda, A. & Hyodoh, K. Early-stage rheumatoid arthritis: prospective study of the effectiveness of MR imaging for diagnosis. Radiology 216, 569–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Sommer, O. J. et al. Rheumatoid arthritis: a practical guide to state-of-the-art imaging, image interpretation, and clinical implications. Radiographics 25, 381–398 (2005).

    Article  PubMed  Google Scholar 

  35. Ostendorf, B. et al. Magnetic resonance imaging and miniarthroscopy of metacarpophalangeal joints: Sensitive detection of morphologic changes in rheumatoid arthritis. Arthritis Rheum. 44, 2492–2502 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Ejbjerg, B. J., Narvestad, E., Jacobsen, S., Thomsen, H. S. & Østergaard, M. Optimised, low cost, low field dedicated extremity MRI is highly specific and sensitive for synovitis and bone erosions in rheumatoid arthritis wrist and finger joints: comparison with conventional high field MRI and radiography. Ann. Rheum. Dis. 64, 1280–1287 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hetland, M. L. et al. MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2-year randomised controlled trial (CIMESTRA). Ann. Rheum. Dis. 68, 384–390 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Naraghi, A. M., White, L. M., Patel, C., Tomlinson, G. & Keystone, E. C. Comparison of 1.0-T extremity MR and 1.5-T conventional high-field-strength MR in patients with rheumatoid arthritis. Radiology 251, 829–837 (2009).

    Article  PubMed  Google Scholar 

  39. Tehranzadeh, J., Ashikyan, O. & Dascalos, J. Advanced imaging of early rheumatoid arthritis. Radiol. Clin. North Am. 42, 89–107 (2004).

    Article  PubMed  Google Scholar 

  40. Shabana, W. M. et al. Nephrogenic systemic fibrosis: a report of 29 cases. AJR Am. J. Roentgenol. 190, 736–741 (2008).

    Article  PubMed  Google Scholar 

  41. Marckmann, P. et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J. Am. Soc. Nephrol. 17, 2359–2362 (2006).

    Article  PubMed  Google Scholar 

  42. Ostergaard, M. et al. Reducing invasiveness, duration, and cost of magnetic resonance imaging in rheumatoid arthritis by omitting intravenous contrast injection—does it change the assessment of inflammatory and destructive joint changes by the OMERACT RAMRIS? J. Rheumatol. 36, 1806–1810 (2009).

    Article  PubMed  Google Scholar 

  43. Narváez, J. A., Narváez, J., De Lama, E. & De Albert, M. MR imaging of early rheumatoid arthritis. Radiographics 30, 143–163 (2010).

    Article  PubMed  Google Scholar 

  44. Narváez, J. A., Narváez, J., Roca, Y. & Aguilera, C. MR imaging assessment of clinical problems in rheumatoid arthritis. Eur. Radiol. 12, 1819–1828 (2002).

    Article  PubMed  Google Scholar 

  45. Ostergaard, M. & Ejbjerg, B. Magnetic resonance imaging of the synovium in rheumatoid arthritis. Semin. Musculoskelet. Radiol. 8, 287–299 (2004).

    Article  PubMed  Google Scholar 

  46. Rand, T. et al. Discrimination between fluid, synovium, and cartilage in patients with rheumatoid arthritis: contrast enhanced spin echo versus non-contrast-enhanced fat-suppressed gradient echo MR imaging. Clin. Radiol. 54, 107–110 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. van der Leij, C., van de Sande, M. G., Lavini, C., Tak, P. P. & Maas, M. Rheumatoid synovial inflammation: pixel-by-pixel dynamic contrast-enhanced MR imaging time-intensity curve shape analysis—a feasibility study. Radiology 253, 234–240 (2009).

    Article  PubMed  Google Scholar 

  48. Hodgson, R. et al. Dynamic contrast enhanced MRI of bone marrow oedema in rheumatoid arthritis. Ann. Rheum. Dis. 67, 270–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Hodgson, R. J. et al. Changes underlying the dynamic contrast-enhanced MRI response to treatment in rheumatoid arthritis. Skeletal Radiol. 37, 201–207 (2008).

    Article  PubMed  Google Scholar 

  50. Zierhut, M. L., Gardner, J. C., Spilker, M. E., Sharp, J. T. & Vicini, P. Kinetic modeling of contrast-enhanced MRI: an automated technique for assessing inflammation in the rheumatoid arthritis wrist. Ann. Biomed. Eng. 35, 781–795 (2007).

    Article  PubMed  Google Scholar 

  51. Boesen, M. et al. MRI quantification of rheumatoid arthritis: current knowledge and future perspectives. Eur. J. Radiol. 71, 189–196 (2009).

    Article  PubMed  Google Scholar 

  52. Kubassova, O., Boesen, M., Cimmino, M. A. & Bliddal, H. A computer-aided detection system for rheumatoid arthritis MRI data interpretation and quantification of synovial activity. Eur. J. Radiol. 74, e67–e72 (2010).

    Article  PubMed  Google Scholar 

  53. Peloschek, P. et al. Assessement of rheumatic diseases with computational radiology: current status and future potential. Eur. J. Radiol. 71, 211–216 (2009).

    Article  PubMed  Google Scholar 

  54. Ostergaard, M. et al. Quantification of synovistis by MRI: correlation between dynamic and static gadolinium-enhanced magnetic resonance imaging and microscopic and macroscopic signs of synovial inflammation. Magn. Reson. Imaging 16, 743–754 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Cimmino, M. A. et al. Dynamic gadolinium-enhanced magnetic resonance imaging of the wrist in patients with rheumatoid arthritis can discriminate active from inactive disease. Arthritis Rheum. 48, 1207–1213 (2003).

    Article  PubMed  Google Scholar 

  56. Agarwal, V. et al. Diffusion tensor anisotropy magnetic resonance imaging: a new tool to assess synovial inflammation. Rheumatology (Oxford) 48, 378–382 (2009).

    Article  Google Scholar 

  57. Dalbeth, N. et al. Cellular characterisation of magnetic resonance imaging bone oedema in rheumatoid arthritis; implications for pathogenesis of erosive disease. Ann. Rheum. Dis. 68, 279–282 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Hashizume, M., Hayakawa, N. & Mihara, M. IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-alpha and IL-17. Rheumatology (Oxford) 47, 1635–1640 (2008).

    Article  CAS  Google Scholar 

  59. Li, X. et al. Quantitative assessment of bone marrow edema-like lesion and overlying cartilage in knees with osteoarthritis and anterior cruciate ligament tear using MR imaging and spectroscopic imaging at 3 Tesla. J. Magn. Reson. Imaging 28, 453–461 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mayerhoefer, M. E. et al. Computer-assisted quantitative analysis of bone marrow edema of the knee: initial experience with a new method. AJR Am. J. Roentgenol. 182, 1399–1403 (2004).

    Article  PubMed  Google Scholar 

  61. Brittberg, M. & Winalski, C. S. Evaluation of cartilage injuries and repair. J. Bone Joint Surg. Am. 85, 58–69 (2003).

    Article  PubMed  Google Scholar 

  62. McQueen, F. M. et al. High-grade MRI bone oedema is common within the surgical field in rheumatoid arthritis patients undergoing joint replacement and is associated with osteitis in subchondral bone. Ann. Rheum. Dis. 66, 1581–1587 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bugatti, S. et al. Involvement of subchondral bone marrow in rheumatoid arthritis: lymphoid neogenesis and in situ relationship to subchondral bone marrow osteoclast recruitment. Arthritis Rheum. 52, 3448–3459 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Dohn, U. M. et al. Are bone erosions detected by magnetic resonance imaging and ultrasonography true erosions? A comparison with computed tomography in rheumatoid arthritis metacarpophalangeal joints. Arthritis Res. Ther. 8, R110 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Perry, D. et al. Detection of erosions in the rheumatoid hand; a comparative study of multidetector computerized tomography versus magnetic resonance scanning. J. Rheumatol. 32, 256–267 (2005).

    PubMed  Google Scholar 

  66. Van Breuseghem, I. Ultrastructural MR imaging techniques of the knee articular cartilage: problems for routine clinical application. Eur. Radiol. 14, 184–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Billinghurst, R. C. et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J. Clin. Invest. 99, 1534–1545 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Buckwalter, J. A. & Mankin, H. J. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr. Course Lect. 47, 477–486 (1998).

    CAS  PubMed  Google Scholar 

  69. Andreas, K. et al. Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study. Arthritis Res. Ther. 10, R9 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Abramson, S. B., Attur, M. & Yazici, Y. Prospects for disease modification in osteoarthritis. Nat. Clin. Pract. Rheumatol. 2, 304–312 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Fragonas, E. et al. Correlation between biochemical composition and magnetic resonance appearance of articular cartilage. Osteoarthritis Cartilage 6, 24–32 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Smith, H. E. et al. Spatial variation in cartilage T2 of the knee. J. Magn. Reson. Imaging 14, 50–55 (2001).

    Article  PubMed  Google Scholar 

  73. Mosher, T. J., Dardzinski, B. J. & Smith, M. B. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2--preliminary findings at 3 T. Radiology 214, 259–266 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Xia, Y., Moody, J. B. & Alhadlaq, H. Orientational dependence of T2 relaxation in articular cartilage: a microscopic MRI (microMRI) study. Magn. Reson. Med. 48, 460–469 (2002).

    Article  PubMed  Google Scholar 

  75. Dardzinski, B. J., Mosher, T. J., Li, S., Van Slyke, M. A. & Smith, M. B. Spatial variation of T2 in human articular cartilage. Radiology 205, 546–550 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Potter, K., Butler, J. J., Horton, W. E. & Spencer, R. G. Response of engineered cartilage tissue to biochemical agents as studied by proton magnetic resonance microscopy. Arthritis Rheum. 43, 1580–1590 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Nieminen, M. T. et al. Quantitative MR microscopy of enzymatically degraded articular cartilage. Magn. Reson. Med. 43, 676–681 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Kight, A. C., Dardzinski, B. J., Laor, T. & Graham, T. B. Magnetic resonance imaging evaluation of the effects of juvenile rheumatoid arthritis on distal femoral weight-bearing cartilage. Arthritis Rheum. 50, 901–905 (2004).

    Article  PubMed  Google Scholar 

  79. Bashir, A., Gray, M. L. & Burstein, D. Gd-DTPA2 as a measure of cartilage degradation. Magn. Reson. Med. 36, 665–673 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Bashir, A., Gray, M. L., Boutin, R. D. & Burstein, D. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205, 551–558 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Nieminen, M. T. et al. Spatial assessment of articular cartilage proteoglycans with Gd-DTPA-enhanced T1 imaging. Magn. Reson. Med. 48, 640–648 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Sur, S., Mamisch, T. C., Hughes, T. & Kim, Y. J. High resolution fast T1 mapping technique for dGEMRIC. J. Magn. Reson. Imaging 30, 896–900 (2009).

    Article  PubMed  Google Scholar 

  83. Reddy, R. et al. Sodium MRI of human articular cartilage in vivo. Magn. Reson. Med. 39, 697–701 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Koff, M. F. & Potter, H. G. Noncontrast MR techniques and imaging of cartilage. Radiol. Clin. North Am. 47, 495–504 (2009).

    Article  PubMed  Google Scholar 

  85. Regatte, R. R., Akella, S. V., Borthakur, A., Kneeland, J. B. & Reddy, R. In vivo proton MR three-dimensional T1ρ mapping of human articular cartilage: initial experience. Radiology 229, 269–274 (2003).

    Article  PubMed  Google Scholar 

  86. Li, X. et al. In vivo T1ρ and T2 mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage 15, 789–797 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, X. et al. In vivo 3 T spiral imaging based multi-slice T1ρ mapping of knee cartilage in osteoarthritis. Magn. Reson. Med. 54, 929–936 (2005).

    Article  PubMed  Google Scholar 

  88. Akella, S. V. et al. Proteoglycan-induced changes in T1ρ-relaxation of articular cartilage at 4 T. Magn. Reson. Med. 46, 419–423 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Dohn, U. M. et al. Detection of bone erosions in rheumatoid arthritis wrist joints with magnetic resonance imaging, computed tomography and radiography. Arthritis Res. Ther. 10, R25 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Borthakur, A. et al. Quantifying sodium in the human wrist in vivo by using MR imaging. Radiology 224, 598–602 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for this research was made possible by grants from the ACR Research and Education Foundation Within Our Reach: Finding a Cure for Rheumatoid Arthritis campaign, the Alliance for Lupus Research—Target Identification in Lupus program, VA Merit Review Grants (1I01BX000600-01), Daiichi-Sankyo Co., Ltd., and NIH grants (1AI 071110 and ARRA 3RO1AI71110-02S1) (all to J. D. Mountz). We also thank Dr Hui-Chen Hsu for critical reading of this manuscript and Dr Fiona Hunter for editorial suggestions. We also thank Ms Carol Humber and Ms Darlene M. Frasher for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

C. G. Borrero and J. D. Mountz researched data for the article and made substantial contributions to discussion of the content. C. G. Borrero wrote the article. C. G. Borrero and J. M. Mountz performed reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to John D. Mountz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borrero, C., Mountz, J. & Mountz, J. Emerging MRI methods in rheumatoid arthritis. Nat Rev Rheumatol 7, 85–95 (2011). https://doi.org/10.1038/nrrheum.2010.173

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing