Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emergence of the glomerular parietal epithelial cell

Key Points

  • Parietal epithelial cells (PECs) are the predominant cell type in glomerular crescents

  • When activated in focal segmental glomerulosclerosis, PECs migrate to the glomerular tuft and produce Bowman's basement membrane matrix proteins, leading to segmental scarring

  • Different PEC subpopulations have been identified under normal conditions

  • In humans, but not mice, a subset of PECs express markers characteristics of stem or progenitor cells

  • Filtered albumin injures PECs by inducing apoptosis, and limits PEC progenitors from undergoing regeneration

Abstract

Glomerular diseases are the leading causes of chronic and end-stage kidney disease. In the 1980s and 1990s, attention was focused on the biology and role of glomerular endothelial and mesangial cells. For the past two decades, seminal discoveries have been made in podocyte biology in health and disease. More recently, the glomerular parietal epithelial cell (PEC)—the fourth resident glomerular cell type—has been under active study, leading to a better understanding and definition of how these cells behave normally, and their potential roles in glomerular disease. Accordingly, this Review will focus on our current knowledge of PECs, in both health and disease. We discuss model systems to study PECs, how PECs might contribute to glomerulosclerosis, crescent and pseudocrescent formation and how PECs handle filtered albumin. These events have consequences on PEC structure and function, and PECs have potential roles as stem or progenitor cells for podocytes in glomerular regeneration, which will also be described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Terminology for cells on Bowman's capsule.
Figure 2: Selected methods used to study PECs.
Figure 3: How PECs might contribute to glomerular disease.
Figure 4: Phenotype of aPECs.
Figure 5: Schematic for the evolution of cellular crescents.

Similar content being viewed by others

References

  1. Arakawa, M. & Tokunaga, J. A scanning electron microscope study of the human Bowman's epithelium. Contrib. Nephrol. 6, 73–78 (1977).

    CAS  PubMed  Google Scholar 

  2. Mbassa, G., Elger, M. & Kriz, W. The ultrastructural organization of the basement membrane of Bowman's capsule in the rat renal corpuscle. Cell Tissue Res. 253, 151–163 (1988).

    CAS  PubMed  Google Scholar 

  3. Brenner, B. M. (Ed.) Brenner & Rector's the Kidney (Elsevier Saunders, 2008).

    Google Scholar 

  4. Bertram, J. F., Soosaipillai, M. C., Ricardo, S. D. & Ryan, G. B. Total numbers of glomeruli and individual glomerular cell types in the normal rat kidney. Cell Tissue Res. 270, 37–45 (1992).

    CAS  PubMed  Google Scholar 

  5. Lee, S. J., Sparke, J. & Howie, A. J. The mammalian glomerulotubular junction studied by scanning and transmission electron microscopy. J. Anat. 182, 177–185 (1993).

    PubMed  PubMed Central  Google Scholar 

  6. Webber, W. A. & Blackbourn, J. The permeability of the parietal layer of Bowman's capsule. Lab. Invest. 25, 367–373 (1971).

    CAS  PubMed  Google Scholar 

  7. Kirk, A., Campbell, S., Bass, P., Mason, J. & Collins, J. Differential expression of claudin tight junction proteins in the human cortical nephron. Nephrol. Dial. Transplant. 25, 2107–2119 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ohse, T. et al. A new function for parietal epithelial cells: a second glomerular barrier. Am. J. Physiol. Renal Physiol. 297, F1566–F1574 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Saxen, L. Organogenesis of the Kidney (Cambridge University Press, 1987).

    Google Scholar 

  10. Saxen, L., Sariola, H. & Lehtonen, E. Sequential cell and tissue interactions governing organogenesis of the kidney. Anat. Embryol. (Berl.) 175, 1–6 (1986).

    CAS  Google Scholar 

  11. Saxén, L. & Sariola, H. Early organogenesis of the kidney. Pediatr. Nephrol. 1, 385–392 (1987).

    PubMed  Google Scholar 

  12. Petermann, A. T. et al. Mitotic cell cycle proteins increase in podocytes despite lack of proliferation. Kidney Int. 63, 113–122 (2003).

    CAS  PubMed  Google Scholar 

  13. Kim, Y. G. et al. The cyclin kinase inhibitor p21CIP1/WAF1 limits glomerular epithelial cell proliferation in experimental glomerulonephritis. Kidney Int. 55, 2349–2361 (1999).

    CAS  PubMed  Google Scholar 

  14. Shankland, S. J. et al. Cyclin kinase inhibitors are increased during experimental membranous nephropathy: potential role in limiting glomerular epithelial cell proliferation in vivo. Kidney Int. 52, 404–413 (1997).

    CAS  PubMed  Google Scholar 

  15. Pabst, R. & Sterzel, R. B. Cell renewal of glomerular cell types in normal rats. An autoradiographic analysis. Kidney Int. 24, 626–631 (1983).

    CAS  PubMed  Google Scholar 

  16. Griffin, S. V., Pichler, R., Dittrich, M., Durvasula, R. & Shankland, S. J. Cell cycle control in glomerular disease. Springer Semin. Immunopathol. 24, 441–457 (2003).

    PubMed  Google Scholar 

  17. Zhai, Q. J. et al. PAX-2 expression in non-neoplastic, primary neoplastic, and metastatic neoplastic tissue: a comprehensive immunohistochemical study. Appl. Immunohistochem. Mol. Morphol. 18, 323–332 (2010).

    CAS  PubMed  Google Scholar 

  18. Patek, C. E. et al. Murine Denys-Drash syndrome: evidence of podocyte de-differentiation and systemic mediation of glomerulosclerosis. Hum. Mol. Genet. 12, 2379–2394 (2003).

    CAS  PubMed  Google Scholar 

  19. Appel, D. et al. Recruitment of podocytes from glomerular parietal epithelial cells. J. Am. Soc. Nephrol. 20, 333–343 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Smeets, B. et al. Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells. J. Am. Soc. Nephrol. 12, 2604–2615 (2009).

    Google Scholar 

  21. Alcorn, D. & Ryan, G. B. The glomerular peripolar cell. Kidney Int. Suppl. 42, S35–S39 (1993).

    CAS  PubMed  Google Scholar 

  22. Gardiner, D. S. & Lindop, G. B. Peripolar cells, granulated glomerular epithelial cells, and their relationship to the juxtaglomerular apparatus in malignant hypertension. J. Pathol. 167, 59–64 (1992).

    CAS  PubMed  Google Scholar 

  23. Gardiner, D. S., Downie, I., Gibson, I. W., More, I. A. & Lindop, G. B. The glomerular peripolar cell: a review. Histol. Histopathol. 6, 567–573 (1991).

    CAS  PubMed  Google Scholar 

  24. Gibson, I. W. et al. A comparative study of the glomerular peripolar cell and the renin-secreting cell in twelve mammalian species. Cell Tissue Res. 277, 385–390 (1994).

    CAS  PubMed  Google Scholar 

  25. Bariety, J., Mandet, C., Hill, G. S. & Bruneval, P. Parietal podocytes in normal human glomeruli. J. Am. Soc. Nephrol. 17, 2770–2780 (2006).

    CAS  PubMed  Google Scholar 

  26. Gibson, I. W. et al. The parietal podocyte: a study of the vascular pole of the human glomerulus. Kidney Int. 41, 211–214 (1992).

    CAS  PubMed  Google Scholar 

  27. Lasagni, L. & Romagnani, P. Basic research: podocyte progenitors and ectopic podocytes. Nat. Rev. Nephrol. 9, 715–716 (2013).

    CAS  PubMed  Google Scholar 

  28. Schulte, K. et al. Origin of parietal podocytes in atubular glomeruli mapped by lineage tracing. J. Am. Soc. Nephrol. 28, 129–141 (2014).

    Google Scholar 

  29. Sicking, E. M. et al. Subtotal ablation of parietal epithelial cells induces crescent formation. J. Am. Soc. Nephrol. 23, 629–640 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fatima, H. et al. Parietal epithelial cell activation marker in early recurrence of FSGS in the transplant. Clin. J. Am. Soc. Nephrol. 7, 1852–1858 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. Smeets, B. et al. Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 22, 1262–1274 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Angelotti, M. L., Lazzeri, E., Lasagni, L. & Romagnani, P. Only anti-CD133 antibodies recognizing the CD133/1 or the CD133/2 epitopes can identify human renal progenitors. Kidney Int. 78, 620–621 (2010).

    CAS  PubMed  Google Scholar 

  33. Lasagni, L. & Romagnani, P. Glomerular epithelial stem cells: the good, the bad, and the ugly. J. Am. Soc. Nephrol. 21, 1612–1619 (2010).

    PubMed  Google Scholar 

  34. Romagnani, P. Family portrait: renal progenitor of Bowman's capsule and its tubular brothers. Am. J. Pathol. 178, 490–493 (2011).

    PubMed  PubMed Central  Google Scholar 

  35. Romagnani, P. Parietal epithelial cells: their role in health and disease. Contrib. Nephrol. 169, 23–36 (2011).

    CAS  PubMed  Google Scholar 

  36. Romagnani, P., Lasagni, L. & Remuzzi, G. Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat. Rev. Nephrol. 9, 137–146 (2013).

    CAS  PubMed  Google Scholar 

  37. Romagnani, P. & Remuzzi, G. Renal progenitors in non-diabetic and diabetic nephropathies. Trends Endocrinol. Metab. 24, 13–20 (2013).

    CAS  PubMed  Google Scholar 

  38. Shmelkov, S. V., St Clair, R., Lyden, D. & Rafii, S. AC133/CD133/Prominin-1. Int. J. Biochem. Cell Biol. 37, 715–719 (2005).

    CAS  PubMed  Google Scholar 

  39. Coskun, V. et al. CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc. Natl Acad. Sci. USA 105, 1026–1031 (2008).

    CAS  PubMed  Google Scholar 

  40. Lasagni, L. et al. Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells 28, 1674–1685 (2010).

    PubMed  PubMed Central  Google Scholar 

  41. Ronconi, E. et al. Regeneration of glomerular podocytes by human renal progenitors. J. Am. Soc. Nephrol. 20, 322–332 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Smeets, B. et al. Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis. J. Am. Soc. Nephrol. 20, 2593–2603 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Rizzo, P. et al. Nature and mediators of parietal epithelial cell activation in glomerulonephritides of human and rat. Am. J. Pathol. 183, 1769–1778 (2013).

    CAS  PubMed  Google Scholar 

  44. Yaoita, E. & Yoshida, Y. Polygonal epithelial cells in glomerular cell culture: podocyte or parietal epithelial origin? Micros. Res. Tech. 57, 212–216 (2002).

    Google Scholar 

  45. Yaoita, E., Kurihara, H., Sakai, T., Ohshiro, K. & Yamamoto, T. Phenotypic modulation of parietal epithelial cells of Bowman capsule in culture. Cell Tissue Res. 304, 339–349 (2001).

    CAS  PubMed  Google Scholar 

  46. Norgaard, J. O. Rat glomerular epithelial cells in culture. Parietal or visceral epithelial origin? Lab. Invest. 57, 277–290 (1987).

    CAS  PubMed  Google Scholar 

  47. Weinstein, T., Cameron, R., Katz, A. & Silverman, M. Rat glomerular epithelial cells in culture express characteristics of parietal, not visceral, epithelium. J. Am. Soc. Nephrol. 3, 1279–1287 (1992).

    CAS  PubMed  Google Scholar 

  48. Guhr, S. S. et al. The expression of podocyte-specific proteins in parietal epithelial cells is regulated by protein degradation. Kidney Int. 84, 532–544 (2013).

    CAS  PubMed  Google Scholar 

  49. Lindgren, D. et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am. J. Pathol. 178, 828–837 (2011).

    PubMed  PubMed Central  Google Scholar 

  50. Angelotti, M. L. et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 30, 1714–1725 (2012).

    CAS  PubMed  Google Scholar 

  51. Smeets, B. et al. Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J. Pathol. 229, 645–659 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sallustio, F. et al. Human renal stem/progenitor cells repair tubular epithelial cell injury through TLR2-driven inhibin-A and microvesicle-shuttled decorin. Kidney Int. 83, 392–403 (2013).

    CAS  PubMed  Google Scholar 

  53. Ohse, T. et al. Establishment of conditionally immortalized mouse glomerular parietal epithelial cells in culture. J. Am. Soc. Nephrol. 19, 1879–1890 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kabgani, N. et al. Primary cultures of glomerular parietal epithelial cells or podocytes with proven origin. PLoS ONE 7, e34907 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sagrinati, C. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. J. Am. Soc. Nephrol. 17, 2443–2456 (2006).

    CAS  PubMed  Google Scholar 

  56. Peired, A. et al. Proteinuria impairs podocyte regeneration by sequestering retinoic acid. J. Am. Soc. Nephrol. 24, 1756–1768 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kerjaschki, D., Sharkey, D. J. & Farquhar, M. G. Identification and characterization of podocalyxin—the major sialoprotein of the renal glomerular epithelial cell. J. Cell Biol. 98, 1591–1596 (1984).

    CAS  PubMed  Google Scholar 

  58. Kerjaschki, D., Noronha-Blob, L., Sacktor, B. & Farquhar, M. G. Microdomains of distinctive glycoprotein composition in the kidney proximal tubule brush border. J. Cell Biol. 98, 1505–1513 (1984).

    CAS  PubMed  Google Scholar 

  59. Migliorini, A. et al. The antiviral cytokines IFN-α and IFN-β modulate parietal epithelial cells and promote podocyte loss: implications for IFN toxicity, viral glomerulonephritis, and glomerular regeneration. Am. J. Pathol. 183, 431–440 (2013).

    CAS  PubMed  Google Scholar 

  60. Ueno, T. et al. Aberrant Notch1-dependent effects on glomerular parietal epithelial cells promotes collapsing focal segmental glomerulosclerosis with progressive podocyte loss. Kidney Int. 83, 1065–1075 (2013).

    CAS  PubMed  Google Scholar 

  61. Chang, A. M. et al. Albumin-induced apoptosis of glomerular parietal epithelial cells is modulated by extracellular signal-regulated kinase 1/2. Nephrol. Dial. Transplant. 27, 1330–1343 (2012).

    CAS  PubMed  Google Scholar 

  62. GenBank. Synthetic construct podocalyxin-like protein 1 gene, promoter region and partial cds. NCBI [online] (2009).

  63. Hackl, M. J. et al. Tracking the fate of glomerular epithelial cells in vivo using serial multiphoton imaging in new mouse models with fluorescent lineage tags. Nat. Med. 19, 1661–1666 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jefferson, J. A., Nelson, P. J., Najafian, B. & Shankland, S. J. Podocyte disorders: core curriculum 2011. Am. J. Kidney Dis. 58, 666–677 (2011).

    PubMed  PubMed Central  Google Scholar 

  65. Gaffney, E. F. Prominent parietal epithelium: a common sign of renal glomerular injury. Hum. Pathol. 13, 651–660 (1982).

    CAS  PubMed  Google Scholar 

  66. Gaffney, E. F. & Panner, B. J. Membranous glomerulonephritis: clinical significance of glomerular hypercellularity and parietal epithelial abnormalities. Nephron 29, 209–215 (1981).

    CAS  PubMed  Google Scholar 

  67. Smeets, B. & Moeller, M. J. Parietal epithelial cells and podocytes in glomerular diseases. Semin. Nephrol. 32, 357–367 (2012).

    CAS  PubMed  Google Scholar 

  68. Macconi, D. et al. MicroRNA-324-3p promotes renal fibrosis and is a target of ACE inhibition. J. Am. Soc. Nephrol. 23, 1496–1505 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gebeshuber, C. A. et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat. Med. 19, 481–487 (2013).

    CAS  PubMed  Google Scholar 

  70. Le Hir, M. & Besse-Eschmann, V. A novel mechanism of nephron loss in a murine model of crescentic glomerulonephritis. Kidney Int. 63, 591–599 (2003).

    PubMed  Google Scholar 

  71. Atkins, R. C., Holdsworth, S. R., Glasgow, E. F. & Matthews, F. E. The macrophagen in human rapidly progressive glomerulonephritis. Lancet 1, 830–832 (1976).

    CAS  PubMed  Google Scholar 

  72. Bariéty, J. et al. Podocyte involvement in human immune crescentic glomerulonephritis. Kidney Int. 68, 1109–1119 (2005).

    PubMed  Google Scholar 

  73. Bariéty, J. et al. Podocytes undergo phenotypic changes and express macrophagic-associated markers in idiopathic collapsing glomerulopathy. Kidney Int. 53, 918–925 (1998).

    PubMed  Google Scholar 

  74. Bariéty, J. et al. Posttransplantation relapse of FSGS is characterized by glomerular epithelial cell transdifferentiation. J. Am. Soc. Nephrol. 12, 261–274 (2001).

    PubMed  Google Scholar 

  75. Masaki, T., Chow, F., Nikolic-Paterson, D. J., Atkins, R. C. & Tesch, G. H. Heterogeneity of antigen expression explains controversy over glomerular macrophage accumulation in mouse glomerulonephritis. Nephrol. Dial. Transplant. 18, 178–181 (2003).

    CAS  PubMed  Google Scholar 

  76. Moeller, M. J. et al. Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis. J. Am. Soc. Nephrol. 15, 61–67 (2004).

    PubMed  Google Scholar 

  77. Singh, S. K. S., Jeansson, M. & Quaggin, S. E. New insights into the pathogenesis of cellular crescents. Curr. Opin. Nephrol. Hypertens. 20, 258–262 (2011).

    PubMed  Google Scholar 

  78. Morita, T., Suzuki, Y. & Churg, J. Structure and development of the glomerular crescent. Am. J. Pathol. 72, 349–368 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Churg, J. & Grishman, E. Ultrastructure of glomerular disease: a review. Kidney Int. 7, 254–261 (1975).

    CAS  PubMed  Google Scholar 

  80. Cattell, V. & Jamieson, S. W. The origin of glomerular crescents in experimental nephrotoxic serum nephritis in the rabbit. Lab. Invest. 39, 584–590 (1978).

    CAS  PubMed  Google Scholar 

  81. Magil, A. B. Histogenesis of glomerular crescents. Immunohistochemical demonstration of cytokeratin in crescent cells. Am. J. Pathol. 120, 222–229 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Albaqumi, M. & Barisoni, L. Current views on collapsing glomerulopathy. J. Am. Soc. Nephrol. 19, 1276–1281 (2008).

    PubMed  Google Scholar 

  83. Barisoni, L., Kriz, W., Mundel, P. & D'Agati, V. The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 10, 51–61 (1999).

    CAS  PubMed  Google Scholar 

  84. Conaldi, P. G. et al. Human immunodeficiency virus-1 tat induces hyperproliferation and dysregulation of renal glomerular epithelial cells. Am. J. Pathol. 161, 53–61 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Husain, M. HIV-1 Nef induces proliferation and anchorage-independent growth in podocytes. J. Am. Soc. Nephrol. 13, 1806–1815 (2002).

    CAS  PubMed  Google Scholar 

  86. Ohtaka, A., Ootaka, T., Sato, H. & Ito, S. Phenotypic change of glomerular podocytes in primary focal segmental glomerulosclerosis: developmental paradigm? Nephrol. Dial. Transplant. 17 (Suppl. 9), 11–15 (2002).

    CAS  PubMed  Google Scholar 

  87. Dijkman, H. B. et al. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells. Kidney Int. 70, 338–344 (2006).

    CAS  PubMed  Google Scholar 

  88. Yang, Y., Gubler, M.-C. & Beaufils, H. Dysregulation of podocyte phenotype in idiopathic collapsing glomerulopathy and HIV-associated nephropathy. Nephron 91, 416–423 (2002).

    PubMed  Google Scholar 

  89. Suzuki, T. et al. Genetic podocyte lineage reveals progressive podocytopenia with parietal cell hyperplasia in a murine model of cellular/collapsing focal segmental glomerulosclerosis. Am. J. Pathol. 174, 1675–1682 (2009).

    PubMed  PubMed Central  Google Scholar 

  90. Dijkman, H., Smeets, B., van der Laak, J., Steenbergen, E. & Wetzels, J. The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis. Kidney Int. 68, 1562–1572 (2005).

    PubMed  Google Scholar 

  91. Van Damme, B., Tardanico, R., Vanrenterghem, Y. & Desmet, V. Adhesions, focal sclerosis, protein crescents, and capsular lesions in membranous nephropathy. J. Pathol. 161, 47–56 (1990).

    CAS  PubMed  Google Scholar 

  92. Kriz, W., Gretz, N. & Lemley, K. V. Progression of glomerular diseases: is the podocyte the culprit? Kidney Int. 54, 687–697 (1998).

    CAS  PubMed  Google Scholar 

  93. Matsusaka, T. et al. Genetic engineering of glomerular sclerosis in the mouse via control of onset and severity of podocyte-specific injury. J. Am. Soc. Nephrol. 16, 1013–1023 (2005).

    CAS  PubMed  Google Scholar 

  94. Wharram, B. L. et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16, 2941–2952 (2005).

    CAS  PubMed  Google Scholar 

  95. Macary, G. et al. Transgenic mice expressing nitroreductase gene under the control of the podocin promoter: a new murine model of inductible glomerular injury. Virchows Arch. 456, 325–337 (2010).

    CAS  PubMed  Google Scholar 

  96. Boute, N. et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat. Genet. 24, 349–354 (2000).

    CAS  PubMed  Google Scholar 

  97. Büscher, A. K. et al. Mutations in podocyte genes are a rare cause of primary FSGS associated with ESRD in adult patients. Clin. Nephrol. 78, 47–53 (2012).

    PubMed  Google Scholar 

  98. Nagata, M. et al. Origin and phenotypic features of hyperplastic epithelial cells in collapsing glomerulopathy. Am. J. Kidney Dis. 32, 962–969 (1998).

    CAS  PubMed  Google Scholar 

  99. Kihara, I. et al. Origin of hyperplastic epithelial cells in idiopathic collapsing glomerulopathy. Histopathology 34, 537–547 (1999).

    CAS  PubMed  Google Scholar 

  100. Nagata, M. et al. Phenotypic characteristics and cyclin-dependent kinase inhibitors repression in hyperplastic epithelial pathology in idiopathic focal segmental glomerulosclerosis. Lab. Invest. 80, 869–880 (2000).

    CAS  PubMed  Google Scholar 

  101. Cai, Y. I., Sich, M., Beziau, A., Kleppel, M. M. & Gubler, M. C. Collagen distribution in focal and segmental glomerulosclerosis: an immunofluorescence and ultrastructural immunogold study. J. Pathol. 179, 188–196 (1996).

    CAS  PubMed  Google Scholar 

  102. Smeets, B. et al. The parietal epithelial cell: a key player in the pathogenesis of focal segmental glomerulosclerosis in Thy-1.1 transgenic mice. J. Am. Soc. Nephrol. 15, 928–939 (2004).

    PubMed  Google Scholar 

  103. Fukuda, A. et al. Growth-dependent podocyte failure causes glomerulosclerosis. J. Am. Soc. Nephrol. 23, 1351–1363 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Shankland, S. J. The podocyte's response to injury: role in proteinuria and glomerulosclerosis. Kidney Int. 69, 2131–2147 (2006).

    CAS  PubMed  Google Scholar 

  105. Marshall, C. B. & Shankland, S. J. Cell cycle and glomerular disease: a minireview. Nephron Exp. Nephrol. 102, e39–e48 (2006).

    PubMed  Google Scholar 

  106. Wiggins, R. C. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 71, 1205–1214 (2007).

    CAS  PubMed  Google Scholar 

  107. Wickman, L. et al. Urine podocyte mRNAs, proteinuria, and progression in human glomerular diseases. J. Am. Soc. Nephrol. 24, 2081–2095 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Pichaiwong, W. et al. Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. J. Am. Soc. Nephrol. 24, 1088–1102 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Pippin, J. W. et al. Cells of renin lineage are progenitors of podocytes and parietal epithelial cells in experimental glomerular disease. Am. J. Pathol. 183, 542–557 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Weissman, I. L., Anderson, D. J. & Gage, F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu. Rev. Cell Dev. Biol. 17, 387–403 (2001).

    CAS  PubMed  Google Scholar 

  111. Little, M. H. & McMahon, A. P. Mammalian kidney development: principles, progress, and projections. Cold Spring Harb. Perspect. Biol. 4, pii:a008300 (2012).

    Google Scholar 

  112. Grouls, S. et al. Lineage specification of parietal epithelial cells requires β-catenin/Wnt signaling. J. Am. Soc. Nephrol. 23, 63–72 (2011).

    PubMed  PubMed Central  Google Scholar 

  113. Benigni, A. et al. Inhibiting angiotensin-converting enzyme promotes renal repair by limiting progenitor cell proliferation and restoring the glomerular architecture. Am. J. Pathol. 179, 628–638 (2011).

    PubMed  PubMed Central  Google Scholar 

  114. Ohse, T. et al. De novo expression of podocyte proteins in parietal epithelial cells during experimental glomerular disease. Am. J. Physiol. Renal Physiol. 298, F702–F711 (2010).

    CAS  PubMed  Google Scholar 

  115. Zhang, J. et al. Retinoids augment the expression of podocyte proteins by glomerular parietal epithelial cells in experimental glomerular disease. Nephron Exp. Nephrol. 121, e23–e37 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang, J. et al. De novo expression of podocyte proteins in parietal epithelial cells in experimental aging nephropathy. Am. J. Physiol. Renal Physiol. 302, F571–F580 (2011).

    PubMed  PubMed Central  Google Scholar 

  117. Zhang, J. et al. Podocyte repopulation by renal progenitor cells following glucocorticoids treatment in experimental FSGS. Am. J. Physiol. Renal Physiol. 304, F1375–F1389 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Smeets, B. et al. Angiotensin converting enzyme inhibition prevents development of collapsing focal segmental glomerulosclerosis in Thy-1.1 transgenic mice. Nephrol. Dial. Transplant. 21, 3087–3097 (2006).

    CAS  PubMed  Google Scholar 

  119. Reeves, W., Caulfield, J. P. & Farquhar, M. G. Differentiation of epithelial foot processes and filtration slits: sequential appearance of occluding junctions, epithelial polyanion, and slit membranes in developing glomeruli. Lab. Invest. 39, 90–100 (1978).

    CAS  PubMed  Google Scholar 

  120. Nagata, M., Yamaguchi, Y. & Ito, K. Loss of mitotic activity and the expression of vimentin in glomerular epithelial cells of developing human kidneys. Anat. Embryol. 187, 275–279 (1993).

    CAS  PubMed  Google Scholar 

  121. LeBleu, V. et al. Stem cell therapies benefit Alport syndrome. J. Am. Soc. Nephrol. 20, 2359–2370 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lange, C. et al. Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int. 68, 1613–1617 (2005).

    PubMed  Google Scholar 

  123. Kinnaird, T. et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109, 1543–1549 (2004).

    CAS  PubMed  Google Scholar 

  124. Wanner, N. et al. Unraveling the role of podocyte turnover in glomerular aging and injury. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2013050452.

  125. Berger, K. et al. The regenerative potential of parietal epithelial cells in adult mice. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2013050481.

  126. Miyazaki, Y. et al. Mice are unable to endogenously regenerate podocytes during the repair of immunotoxin-induced glomerular injury. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gft413.

  127. Sakamoto, K. et al. The direction and role of phenotypic transition between podocytes and parietal epithelial cells in focal segmental glomerulosclerosis. Am. J. Physiol. Renal Physiol. 306, F98–F104 (2014).

    CAS  PubMed  Google Scholar 

  128. Naujokat, C. & Saric´, T. Concise review: role and function of the ubiquitin-proteasome system in mammalian stem and progenitor cells. Stem Cells 25, 2408–2418 (2007).

    CAS  PubMed  Google Scholar 

  129. Grahammer, F., Wanner, N. & Huber, T. B. Podocyte regeneration: who can become a podocyte? Am. J. Pathol. 183, 333–335 (2013).

    PubMed  Google Scholar 

  130. Ophascharoensuk, V. et al. Role of intrinsic renal cells versus infiltrating cells in glomerular crescent formation. Kidney Int. 54, 416–425 (1998).

    CAS  PubMed  Google Scholar 

  131. Fanni, D. et al. CD44 immunoreactivity in the developing human kidney: a marker of renal progenitor stem cells? Ren. Fail. 35, 967–970 (2013).

    PubMed  Google Scholar 

  132. Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A. & Humphreys, B. D. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1310653110.

  133. Shankland, S. J., Anders, H.-J. & Romagnani, P. Glomerular parietal epithelial cells in kidney physiology, pathology, and repair. Curr. Opin. Nephrol. Hypertens. 22, 302–309 (2013).

    CAS  PubMed  Google Scholar 

  134. Downie, I. et al. Non-granulated peripolar cells exist in the rat glomerulus. Cell Tissue Res. 268, 567–570 (1992).

    CAS  PubMed  Google Scholar 

  135. Cockwell, P., Howie, A. J., Adu, D. & Savage, C. O. In situ analysis of C-C chemokine mRNA in human glomerulonephritis. Kidney Int. 54, 827–836 (1998).

    CAS  PubMed  Google Scholar 

  136. Segerer, S. et al. Expression of the chemokine monocyte chemoattractant protein-1 and its receptor chemokine receptor 2 in human crescentic glomerulonephritis. J. Am. Soc. Nephrol. 11, 2231–2242 (2000).

    CAS  PubMed  Google Scholar 

  137. Ding, M. et al. Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nat. Med. 12, 1081–1087 (2006).

    CAS  PubMed  Google Scholar 

  138. Yamamoto, T. et al. Expression of types I, II, and III TGF-β receptors in human glomerulonephritis. J. Am. Soc. Nephrol. 9, 2253–2261 (1998).

    CAS  PubMed  Google Scholar 

  139. Kanemoto, K. et al. Connective tissue growth factor participates in scar formation of crescentic glomerulonephritis. Lab. Invest. 83, 1615–1625 (2003).

    CAS  PubMed  Google Scholar 

  140. Floege, J. et al. Localization of fibroblast growth factor-2 (basic FGF) and FGF receptor-1 in adult human kidney. Kidney Int. 56, 883–897 (1999).

    CAS  PubMed  Google Scholar 

  141. Floege, J. et al. Basic fibroblast growth factor augments podocyte injury and induces glomerulosclerosis in rats with experimental membranous nephropathy. J. Clin. Invest. 96, 2809–2819 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Rossini, M. et al. Immunolocalization of fibroblast growth factor-1 (FGF-1), its receptor (FGFR-1), and fibroblast-specific protein-1 (FSP-1) in inflammatory renal disease. Kidney Int. 68, 2621–2628 (2005).

    CAS  PubMed  Google Scholar 

  143. Eitner, F. PDGF-C expression in the developing and normal adult human kidney and in glomerular diseases. J. Am. Soc. Nephrol. 14, 1145–1153 (2003).

    CAS  PubMed  Google Scholar 

  144. van Roeyen, C. R. et al. Induction of progressive glomerulonephritis by podocyte-specific overexpression of platelet-derived growth factor-D. Kidney Int. 80, 1292–1305 (2011).

    CAS  PubMed  Google Scholar 

  145. Iyoda, M., Shibata, T., Kawaguchi, M., Yamaoka, T. & Akizawa, T. Preventive and therapeutic effects of imatinib in Wistar-Kyoto rats with anti-glomerular basement membrane glomerulonephritis. Kidney Int. 75, 1060–1070 (2009).

    CAS  PubMed  Google Scholar 

  146. Iyoda, M. et al. Long and short-term treatment with imatinib attenuates the development of chronic kidney disease in experimental anti-glomerular basement membrane nephritis. Nephrol. Dial. Transplant. 28, 576–584 (2013).

    CAS  PubMed  Google Scholar 

  147. Moeller, M. J. & Smeets, B. Novel target in the treatment of RPGN: the activated parietal cell. Nephrol. Dial. Transplant. 28, 489–492 (2013).

    CAS  PubMed  Google Scholar 

  148. Kurayama, R. et al. Role of amino acid transporter LAT2 in the activation of mTORC1 pathway and the pathogenesis of crescentic glomerulonephritis. Lab. Invest. 91, 992–1006 (2011).

    CAS  PubMed  Google Scholar 

  149. Nakamura, H., Kitazawa, K., Honda, H. & Sugisaki, T. Roles of and correlation between α-smooth muscle actin, CD44, hyaluronic acid and osteopontin in crescent formation in human glomerulonephritis. Clin. Nephrol. 64, 401–411 (2005).

    CAS  PubMed  Google Scholar 

  150. Bollee, G. et al. Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nat. Med. 17, 1242–1250 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M. J. Moeller is supported by the TP17 SFB/Transregio 57 of the Deutsche Forschungsgemeinschaft (DFG) and B. Smeets by a grant by the DFG (BO 3755/1-1). M. J. Moeller is also supported by the European Research Projects on Rare Diseases (E-Rare), Project Rare-G # 01 GM 1208A and is a member of the SFB/Transregio 57 DFG consortium “Mechanisms of organ fibrosis”. S. J. Shankland is supported by grants from the NIH and the American Heart Association (DK056799, DK083391).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made a substantial contribution to a discussion of the content and wrote and edited the manuscript.

Corresponding authors

Correspondence to Stuart J. Shankland or Marcus J. Moeller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shankland, S., Smeets, B., Pippin, J. et al. The emergence of the glomerular parietal epithelial cell. Nat Rev Nephrol 10, 158–173 (2014). https://doi.org/10.1038/nrneph.2014.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing