Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage?

Abstract

Regulatory T (TReg) cells constitute a unique T-cell lineage that has a crucial role in immunological tolerance. Several years ago, forkhead box P3 (FOXP3) was identified as the transcription factor that was responsible for determining the development and function of these cells. However, the underlying mechanisms that are involved in the regulation of the FOXP3 gene remain unclear and therefore preclude accurate identification and manipulation of TReg cells. In this Progress article, we summarize recent advances in understanding how FOXP3 expression is controlled and highlight evidence suggesting that epigenetic regulation of the FOXP3 locus contributes to its role as a lineage-specification factor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The origin of regulatory T cells in the thymus and the periphery.
Figure 2: Multiple signalling pathways converge for the induction of forkhead box P3 expression.
Figure 3: The FOXP3 locus is subject to epigenetic control.

Similar content being viewed by others

References

  1. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  2. Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nature Immunol. 4, 337–342 (2003).

    Article  CAS  Google Scholar 

  3. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Fontenot, J. D., Dooley, J. L., Farr, A. G. & Rudensky, A. Y. Developmental regulation of Foxp3 expression during ontogeny. J. Exp. Med. 202, 901–906 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liston, A. et al. Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc. Natl Acad. Sci. USA 105, 11903–11908 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aschenbrenner, K. et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nature Immunol. 8, 351–358 (2007).

    Article  CAS  Google Scholar 

  7. Siewert, C. et al. Experience-driven development: effector/memory-like aE+Foxp3+ regulatory T cells originate from both naive T cells and naturally occurring naive-like regulatory T cells. J. Immunol. 180, 146–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nature Immunol. 12, 1219–1227 (2005).

    Article  Google Scholar 

  9. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Floess, S. et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLOS Biol. 5, e38 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Walker, M. R. et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25 T cells. J. Clin. Invest. 112, 1437–1443 (2003).

    CAS  PubMed  Google Scholar 

  14. Mantel, P. Y. et al. Molecular mechanisms underlying FOXP3 induction in human T cells. J. Immunol. 176, 3593–3602 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Gavin, M. A. et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl Acad. Sci. USA 103, 6659–6664 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tran, D. Q., Ramsey, H. & Shevach, E. M. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T cell receptor stimulation is TGF-β-dependent but does not confer a regulatory phenotype. Blood 110, 2983–2990 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Allan, S. E. et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 19, 345–354 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Pillai, V., Ortega, S. B., Wang, C. K. & Karandikar, N. J. Transient regulatory T-cells: a state attained by all activated human T-cells. Clin. Immunol. 123, 18–29 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, H. P. & Leonard, W. J. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J. Exp. Med. 204, 1543–1551 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gupta, S. et al. Differential requirement of PKC-θ in the development and function of natural regulatory T cells. Mol. Immunol. 46, 213–214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, H. et al. A potential side effect of cyclosporin A: inhibition of CD4+CD25+ regulatory T cells in mice. Transplantation 82, 1484–1492 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Coenen, J. J. et al. Rapamycin, not cyclosporine, permits thymic generation and peripheral preservation of CD4+ CD25+ FoxP3+ T cells. Bone Marrow Transplant. 39, 537–545 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. San Segundo, D., Fabrega, E., Lopez-Hoyos, M. & Pons, F. Reduced numbers of blood natural regulatory T cells in stable liver transplant recipients with high levels of calcineurin inhibitors. Transplant. Proc. 39, 2290–2292 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Brandt, C., Pavlovic, V., Worm, M., Radbruch, A. & Baumgrass, R. Low-dose cyclosporine A therapy increases the regulatory T cell population in patients with atopic dermatitis. Allergy (in the press).

  25. Kim, J. M. & Rudensky, A. The role of the transcription factor Foxp3 in the development of regulatory T cells. Immunol. Rev. 212, 86–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl Acad. Sci. USA 105, 7797–7802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT–mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tai, X., Cowan, M., Feigenbaum, L. & Singer, A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nature Immunol. 6, 152–162 (2005).

    Article  CAS  Google Scholar 

  29. Benson, M. J., Pino-Lagos, K., Rosemblatt, M. & Noelle, R. J. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204, 1765–1774 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nature Immunol. 6, 1142–1151 (2005).

    Article  CAS  Google Scholar 

  31. Mayack, S. R. & Berg, L. J. Cutting Edge: an alternative pathway of CD4+ T cell differentiation is induced following activation in the absence of γ-chain-dependent cytokine signals. J. Immunol. 176, 2059–2063 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Yao, Z. et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109, 4368–4375 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zorn, E. et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT dependent mechanism and induces the expansion of these cells in vivo. Blood 108, 1571–1579 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burchill, M. A., Yang, J., Vogtenhuber, C., Blazar, B. R. & Farrar, M. A. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. 178, 280–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. D'Cruz, L. M. & Klein, L. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nature Immunol. 6, 1152–1159 (2005).

    Article  CAS  Google Scholar 

  36. Marie, J. C., Letterio, J. J., Gavin, M. & Rudensky, A. Y. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 1061–1067 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, Y. et al. A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nature Immunol. 9, 632–640 (2008).

    Article  CAS  Google Scholar 

  38. Venuprasad, K. et al. The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nature Immunol. 9, 245–253 (2008).

    Article  CAS  Google Scholar 

  39. Tone, Y. et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nature Immunol. 9, 194–202 (2008).

    Article  CAS  Google Scholar 

  40. Xiao, S. et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-β-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J. Immunol. 181, 2277–2284 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Hill, J. A. et al. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells. Immunity 29, 758–770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Samon, J. B. et al. Notch1 and TGFβ1 cooperatively regulate Foxp3 expression and the maintenance of peripheral regulatory T cells. Blood 112, 1813–1821 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ou-Yang, H. F. et al. Notch signaling regulates the FOXP3 promoter through RBP-J- and Hes1-dependent mechanisms. Mol. Cell. Biochem. 8 Sep 2008 (doi: 10.1007/s11010-008-9912–9914).

  44. Wei, J. et al. Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells. Proc. Natl Acad. Sci. USA 104, 18169–18174 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mantel, P. Y. et al. GATA3-driven Th2 responses inhibit TGF-β1-induced FOXP3 expression and the formation of regulatory T cells. PLoS Biol. 5, e329 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dardalhon, V. et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3 effector T cells. Nature Immunol. 9, 1347–1355 (2008).

    Article  CAS  Google Scholar 

  47. Takaki, H. et al. STAT6 inhibits TGF-β-mediated Foxp3 induction through direct binding to the Foxp3 promoter, which is reverted by retinoic acid receptor. J. Biol. Chem. 283, 14955–14962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fragale, A. et al. IFN regulatory factor-1 negatively regulates CD4+ CD25+ regulatory T cell differentiation by repressing Foxp3 expression. J. Immunol. 181, 1673–1682 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Fazi, F. & Nervi, C. MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination. Cardiovasc. Res. 79, 553–561 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Hoefig, K. P. & Heissmeyer, V. MicroRNAs grow up in the immune system. Curr. Opin. Immunol. 20, 281–287 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Cobb, B. S. et al. A role for Dicer in immune regulation. J. Exp. Med. 203, 2519–2527 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou, X. et al. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J. Exp. Med. 205, 1983–1991 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chong, M. M., Rasmussen, J. P., Rundensky, A. Y. & Littman, D. R. The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J. Exp. Med. 205, 2005–2017 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liston, A., Lu, L. F., O'Carroll, D., Tarakhovsky, A. & Rudensky, A. Y. Dicer-dependent microRNA pathway safeguards regulatory T cell function. J. Exp. Med. 205, 1993–2004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marson, A. et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931–935 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wilson, B., Rowell, E. & Sekimata, M. Epigenetic control of T-helper-cell differentiation. Nature Rev. Immunol. (in the press).

  57. Janson, P. C. et al. FOXP3 promoter demethylation reveals the committed Treg population in humans. PLoS ONE 3, e1612 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Baron, U. et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells. Eur. J. Immunol. 37, 2378–2389 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Nagar, M. et al. Epigenetic inheritance of DNA methylation limits activation-induced expression of FOXP3 in conventional human CD25CD4+ T cells. Int. Immunol. 20, 1041–1055 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Polansky, J. et al. DNA methylation controls Foxp3 gene expression. Eur. J. Immunol. 38, 1654–1663 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Ansel, K. M., Lee, D. U. & Rao, A. An epigenetic view of helper T cell differentiation. Nature Immunol. 4, 616–623 (2003).

    Article  CAS  Google Scholar 

  62. Wieczorek, G. et al. Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in solid tissue and peripheral blood. Cancer Res. (in the press).

  63. Metivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Xu, L., Kitani, A., Fuss, I. & Strober, W. Cutting Edge: regulatory T cells induce CD4+CD25Foxp3 T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-β. J. Immunol. 178, 6725–6729 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Koenen, H. J. et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112, 2340–2352 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Radhakrishnan, S. et al. Reprogrammed FoxP3+ T regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo. J. Immunol. 181, 3137–3147 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nature Med. 13, 1299–1307 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Reilly, C. M. et al. The histone deacetylase inhibitor trichostatin A upregulates regulatory T cells and modulates autoimmunity in NZB/W F1 mice. J. Autoimmun. 31, 123–130 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, C., Rowell, E. A., Thomas, R. M., Hancock, W. W. & Wells, A. D. Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. J. Biol. Chem. 281, 36828–36834 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Li, B. et al. FOXP3 ensembles in T-cell regulation. Immunol. Rev. 212, 99–113 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Kwon, H. K. et al. Foxp3 induces IL-4 gene silencing by affecting nuclear translocation of NFκB and chromatin structure. Mol. Immunol. 45, 3205–3212 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Samanta, A. et al. TGF-β and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3. Proc. Natl Acad. Sci. USA 105, 14023–14027 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Rao for helpful discussions and R. Baumgrass, B. Schraven, J. Lindquist and M. Merkenschlager for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Huehn.

Related links

Related links

FURTHER INFORMATION

Jochen Huehn's homepage

The University of California Santa Cruz Genome assembly web site

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huehn, J., Polansky, J. & Hamann, A. Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage?. Nat Rev Immunol 9, 83–89 (2009). https://doi.org/10.1038/nri2474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2474

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing