Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Statin therapy and autoimmune disease: from protein prenylation to immunomodulation

Key Points

  • 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, or statins, reduce the conversion of HMG-CoA to L-mevalonate and therefore the downstream biosynthesis of cholesterol. There is increasing awareness that many of the beneficial effects of statins are mediated not through the depletion of cholesterol but through modulation of the immune system.

  • A key cholesterol-independent effect of statins is the inhibition the biosynthesis of isoprenoids that are essential for the post-translational modification and function of various important signalling proteins, including those of the small GTPase family. Many of these prenylated proteins are involved in orchestrating immune responses.

  • Statins attenuate antigen presentation to CD4+ T cells by inhibiting interferon-γ-induced MHC class II and co-stimulatory molecule expression and by interfering with antigen uptake and processing. T-cell proliferation is also impaired by statin-mediated inhibition of cytoskeletal remodelling.

  • By altering transcriptional control of T-cell differentiation statins induce a bias towards T helper 2 (TH2)-cell differentiation and away from TH1-cell differentiation.

  • Leukocyte trafficking is impaired as statins alter the expression of cell-adhesion molecules, chemokines, chemokine receptors and matrix metalloproteinases and inhibit adhesion-molecule signalling required for transvascular migration. Through their effect on cytoskeletal reorganization, statins also reduce leukocyte motility.

  • In most cases, the treatment of animal models of autoimmune disease with statins elicits an improvement in clinical outcome that can be attributed to the effects highlighted above. In the few preliminary clinical trials reported so far, there is an indication that statins confer some clinical benefit.

  • Despite several concerns, the high degree of patient tolerance and their simplicity of delivery make statins an attractive addition to currently available strategies for treating autoimmune disease.

Abstract

Statins have been prescribed extensively for their cholesterol-lowering properties and efficacy in cardiovascular disease. However, compelling evidence now exists that statins also have extensive immunomodulatory properties that operate independently of lipid lowering. Consequently, much attention has been directed towards their potential as therapeutic agents for the treatment of autoimmune disease. Modulation of post-translational protein prenylation seems to be a key mechanism by which statins alter immune function. In this Review, the effect of statin therapy on immune function, and how this relates to the pathogenesis of autoimmune disease, is reviewed alongside current opinion of what the key biological targets of statins are.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cholesterol synthesis pathway and protein prenylation.
Figure 2: The effect of statins on T-cell and antigen-presenting cell function.
Figure 3: The effect of statins on leukocyte adhesion and migration and endothelial-cell immune function.

Similar content being viewed by others

References

  1. LaRosa, J. C., He, J. & Vupputuri, S. Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. JAMA 282, 2340–2346 (1999).

    CAS  PubMed  Google Scholar 

  2. Maron, D. J., Fazio, S. & Linton, M. F. Current perspectives on statins. Circulation 101, 207–213 (2000).

    CAS  PubMed  Google Scholar 

  3. Palinski, W. New evidence for beneficial effects of statins unrelated to lipid lowering. Arterioscler. Thromb. Vasc. Biol. 21, 3–5 (2001).

    CAS  PubMed  Google Scholar 

  4. Wick, G., Schett, G., Amberger, A., Kleindienst, R. & Xu, Q. Is atherosclerosis an immunologically mediated disease? Immunol. Today 16, 27–33 (1995).

    CAS  PubMed  Google Scholar 

  5. Ludewig, B., Zinkernagel, R. M. & Hengartner, H. Arterial inflammation and atherosclerosis. Trends Cardiovasc. Med. 12, 154–159 (2002).

    CAS  PubMed  Google Scholar 

  6. Vaughan, C. J., Murphy, M. B. & Buckley, B. M. Statins do more than just lower cholesterol. Lancet 348, 1079–1082 (1996).

    CAS  PubMed  Google Scholar 

  7. Zamvil, S. S. & Steinman, L. Cholesterol-lowering statins possess anti-inflammatory activity that might be useful for treatment of MS. Neurology 59, 970–971 (2002).

    PubMed  Google Scholar 

  8. Sherer, Y. & Shoenfeld, Y. Immunomodulation for treatment and prevention of atherosclerosis. Autoimmun. Rev. 1, 21–27 (2002).

    CAS  PubMed  Google Scholar 

  9. Steffens, S. & Mach, F. Anti-inflammatory properties of statins. Semin. Vasc. Med. 4, 417–422 (2004).

    PubMed  Google Scholar 

  10. Gurevich, V. S., Shovman, O., Slutzky, L., Meroni, P. L. & Shoenfeld, Y. Statins and autoimmune diseases. Autoimmun. Rev. 4, 123–129 (2005).

    CAS  PubMed  Google Scholar 

  11. Liao, J. K. Isoprenoids as mediators of the biological effects of statins. J. Clin. Invest. 110, 285–288 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, F. L. & Casey, P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241–269 (1996). Reviews 11 and 12 provide information relating to the importance of statin-mediated alterations in protein prenylation and summarize the biological importance of protein prenylation, respectively.

    CAS  PubMed  Google Scholar 

  13. Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 81, 153–208 (2001).

    CAS  PubMed  Google Scholar 

  14. Chakrabarti, R. & Engleman, E. G. Interrelationships between mevalonate metabolism and the mitogenic signaling pathway in T lymphocyte proliferation. J. Biol. Chem. 266, 12216–12222 (1991).

    CAS  PubMed  Google Scholar 

  15. Cuthbert, J. A. & Lipsky, P. E. A product of mevalonate proximal to isoprenoids is the source of both a necessary growth factor and an inhibitor of cell proliferation. Trans. Assoc. Am. Physicians 104, 97–106 (1991).

    CAS  PubMed  Google Scholar 

  16. Pahan, K., Sheikh, F. G., Namboodiri, A. M. & Singh, I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J. Clin. Invest. 100, 2671–2679 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stanislaus, R., Pahan, K., Singh, A. K. & Singh, I. Amelioration of experimental allergic encephalomyelitis in Lewis rats by lovastatin. Neurosci. Lett. 269, 71–74 (1999). This is the first report that describes the beneficial effect of statin treatment on the pathogenesis of EAE. It shows that lovastatin inhibited the expression of iNOS, TNF and IFNγ in the CNS of rats with EAE.

    CAS  PubMed  Google Scholar 

  18. Stanislaus, R., Singh, A. K. & Singh, I. Lovastatin treatment decreases mononuclear cell infiltration into the CNS of Lewis rats with experimental allergic encephalomyelitis. J. Neurosci. Res. 66, 155–162 (2001).

    CAS  PubMed  Google Scholar 

  19. Kwak, B., Mulhaupt, F., Myit, S. & Mach, F. Statins as a newly recognised type of immunomodulator. Nature Med. 6, 1399–1402 (2000). This is the first paper to show that statins function as direct inhibitors of IFNγ-induced MHC class II expression and therefore as repressors of T-cell activation. This effect was due to inhibition of CIITA in human endothelial cells and monocytes/macrophages.

    CAS  PubMed  Google Scholar 

  20. Steinman, L., Rosenbaum, J. T., Sriram, S. & McDevitt, H. O. In vivo effects of antibodies to immune response gene products: prevention of experimental allergic encephalitis. Proc. Natl Acad. Sci. USA 78, 7111–7114 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sriram, S. & Steinman, L. Anti I-A antibody suppresses active encephalomyelitis: treatment model for IR gene linked diseases. J. Exp. Med. 158, 1362–1367 (1983).

    CAS  PubMed  Google Scholar 

  22. Waldor, M. K. et al. A. Disappearance and reappearance of B cells following in vivo treatment with monoclonal anti I-A antibodies. Proc. Natl Acad. Sci. USA 81, 2855–2858 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zamvil, S. S. et al. Encephalitogenic T cell clones specific for myelin basic protein: an unusual bias in antigen presentation. J. Exp. Med. 162, 2107–2124 (1985).

    CAS  PubMed  Google Scholar 

  24. Zamvil, S. S. & Steinman, L. The T lymphocyte in autoimmune encephalomyelitis. Annu. Rev. Immunol. 8, 579–621 (1990).

    CAS  PubMed  Google Scholar 

  25. Bottazzo, G. F., Pujol-Borrell, R., Hanafusa, T. & Feldmann, M. Role of aberrant HLA-DR expression and antigen presentation in induction of endocrine autoimmunity. Lancet 2, 1115–1119 (1983).

    CAS  PubMed  Google Scholar 

  26. Youssef, S. et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420, 78–84 (2002). This was the first study to show that statins inhibit T H 1-cell development and promote T H 2-cell development and attenuate both acute and relapse phases of EAE. Crucially, they showed that adoptive transfer of T H 2 cells protected recipient mice from EAE induction.

    CAS  PubMed  Google Scholar 

  27. Sadeghi, M. M. et al. Inhibition of interferon-γ-mediated microvascular endothelial cell major histocompatibility complex class II gene activation by HMG-CoA reductase inhibitors. Transplantation 71, 1262–1268 (2001).

    CAS  PubMed  Google Scholar 

  28. Yilmaz, A. et al. HMG-CoA reductase inhibitors suppress maturation of human dendritic cells: new implications for atherosclerosis. Atherosclerosis 172, 85–93 (2004).

    CAS  PubMed  Google Scholar 

  29. Schonbeck, U. et al. Oxidized low-density lipoprotein augments and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors limit CD40 and CD40L expression in human vascular cells. Circulation 106, 2888–2893 (2002).

    PubMed  Google Scholar 

  30. Wagner, A. H., Gebauer, M., Guldenzoph, B. & Hecker, M. 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent inhibition of CD40 expression by atorvastatin in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 22, 1784–1789 (2002).

    CAS  PubMed  Google Scholar 

  31. Lawman, S., Mauri, C., Jury, E. C., Cook, H. T. & Ehrenstein, M. R. Atorvastatin inhibits autoreactive B cell activation and delays lupus development in New Zealand black/white F1 mice. J. Immunol. 173, 7641–7646 (2004). The first report showing improved clinical outcome and reduced glomerular injury in experimental lupus following statin treatment. Improvement was associated with a decrease in the expression of MHC class II and co-stimulatory molecules and an attenuation of T-cell proliferation.

    CAS  PubMed  Google Scholar 

  32. Nobes, C. & Marsh, M. Dendritic cells: new roles for Cdc42 and Rac in antigen uptake? Curr. Biol. 10, R739–R741 (2000).

    CAS  PubMed  Google Scholar 

  33. Aktas, O. et al. Treatment of relapsing paralysis in experimental encephalomyelitis by targeting Th1 cells through atorvastatin. J. Exp. Med. 197, 725–733 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Neuhaus, O. et al. Statins as immunomodulators. Comparison with interferon-β1b in MS. Neurology 59, 990–997 (2002).

    CAS  PubMed  Google Scholar 

  35. Kuipers, H. F. et al. Statins affect T cell-surface expression of major histocompatibility complex class II molecules by disrupting cholesterol-containing microdomains. Hum. Immunol. 66, 653–665 (2005).

    CAS  PubMed  Google Scholar 

  36. Ghittoni, R. et al. Simvastatin inhibits T-cell activation by selectively impairing the function of Ras superfamily GTPases. FASEB J. 19, 605–607 (2005).

    CAS  PubMed  Google Scholar 

  37. Dunn, S. E. et al. Isoprenoids determine Th1/Th2 fate in pathogenic T cells providing a mechanism of modulation of autoimmunity by atorvastatin. J. Exp. Med. 203, 401–412 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Greenwood, J. et al. Lovastatin inhibits brain endothelial Rho-dependent lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB J. 17, 905–907 (2003). The authors of this report describe a new concept for the effect of statins on CNS autoimmune disease. They show that statins inhibit brain endothelial-cell RHO GTPase activity, which is required for successful leukocyte transvascular migration.

    CAS  PubMed  Google Scholar 

  39. Stanislaus, R., Gilg, A. G., Singh, A. K. & Singh, I. Immunomodulation of experimental autoimmune encephalomyelitis in the Lewis rats by Lovastatin. Neurosci. Lett. 333, 167–170 (2002).

    CAS  PubMed  Google Scholar 

  40. Nath, N., Giri, S., Prasad, R., Singh, A. K. & Singh, I. Potential targets of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor for multiple sclerosis therapy. J. Immunol. 172, 1273–1286 (2004).

    CAS  PubMed  Google Scholar 

  41. Ho, I. C. & Glimcher, L. H. Transcription: tantalizing times for T cells. Cell (Suppl.) 109, S109–S120 (2002).

    CAS  PubMed  Google Scholar 

  42. Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nature Rev. Immunol. 2, 933–944 (2002).

    CAS  Google Scholar 

  43. Robinson, D. S. & O'Garra, A. Further checkpoints in Th1 development. Immunity 16, 755–758 (2002).

    CAS  PubMed  Google Scholar 

  44. Paintlia, A. S. et al. Regulation of gene expression associated with acute experimental autoimmune encephalomyelitis by Lovastatin. J. Neurosci. Res. 77, 63–81 (2004).

    CAS  PubMed  Google Scholar 

  45. Liu, W., Li, W. M., Gao, C. & Sun, N. L. Effects of atorvastatin on the Th1/Th2 polarization of ongoing experimental autoimmune myocarditis in Lewis rats. J. Autoimmun. 25, 258–263 (2005).

    PubMed  Google Scholar 

  46. Gegg, M. E. et al. Suppression of autoimmune retinal disease by lovastatin does not require Th2 cytokine induction. J. Immunol. 174, 2327–2335 (2005).

    CAS  PubMed  Google Scholar 

  47. Thomas, P. B. et al. The effects of atorvastatin in experimental autoimmune uveitis. Br. J. Ophthalmol. 89, 275–279 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Leung, B. P. et al. A novel anti-inflammatory role for simvastatin in inflammatory arthritis. J. Immunol. 170, 1524–1530 (2003). The first report showing the potential of statins for treating arthritis. Using an animal model, simvastatin was shown to attenuate disease and is associated with suppression of a T H 1-cell response.

    CAS  PubMed  Google Scholar 

  49. Palmer, G. et al. Assessment of the efficacy of different statins in murine collagen-induced arthritis. Arthritis Rheum. 50, 4051–4059 (2004).

    CAS  PubMed  Google Scholar 

  50. Barsante, M. M. et al. Anti-inflammatory and analgesic effects of atorvastatin in a rat model of adjuvant-induced arthritis. Eur. J. Pharmacol. 516, 282–289 (2005).

    CAS  PubMed  Google Scholar 

  51. Azuma, R. W. et al. HMG-CoA reductase inhibitor attenuates experimental autoimmune myocarditis through inhibition of T cell activation. Cardiovasc. Res. 64, 412–420 (2004). The first report showing improved cardiac function in an animal model of autoimmune myocarditis following statin treatment. Improvement was associated with a decrease in T-cell infiltration and T H 1-type cytokine production and inhibition of NF-κB.

    CAS  PubMed  Google Scholar 

  52. Vollmer, T. et al. Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet 363, 1607–1608 (2004). This article reports on a 6-month open-label study of 28 patients with relapsing-remitting multiple sclerosis in which oral simvastatin treatment (80 mg) resulted in a marked reduction in the number and volume of gadolinium-enhancing lesions.

    CAS  PubMed  Google Scholar 

  53. Fournie, G. J. et al. Cellular and genetic factors involved in the difference between Brown Norway and Lewis rats to develop respectively type-2 and type-1 immune-mediated diseases. Immunol. Rev. 184, 145–160 (2001).

    CAS  PubMed  Google Scholar 

  54. Sattler, M. B. et al. Simvastatin treatment does not protect retinal ganglion cells from degeneration in a rat model of autoimmune optic neuritis. Exp. Neurol. 193, 163–171 (2005).

    PubMed  Google Scholar 

  55. Walters C. E. et al. Inhibition of Rho GTPases with protein prenyltransferase inhibitors prevents leukocyte recruitment to the central nervous system and attenuates clinical signs of disease in an animal model of multiple sclerosis. J. Immunol. 168, 4087–4094 (2002).

    CAS  PubMed  Google Scholar 

  56. Frenkel, J. et al. Lack of isoprenoid products raises ex vivo interleukin-1β secretion in hyperimmunoglobulinemia D and periodic fever syndrome. Arthritis Rheum. 46, 2794–2803 (2002).

    CAS  PubMed  Google Scholar 

  57. Houten, S. M., Frenkel, J. & Waterham, H. R. Isoprenoid biosynthesis in hereditary periodic fever syndromes and inflammation. Cell. Mol. Life Sci. 60, 1118–1134 (2003).

    CAS  PubMed  Google Scholar 

  58. Weitz-Schmidt, G. et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nature Med. 7, 687–692 (2001).

    CAS  PubMed  Google Scholar 

  59. Weber, C., Erl, W., Weber, K. S. & Weber, P. C. HMG-CoA reductase inhibitors decrease CD11b expression and CD11b-dependent adhesion of monocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia. J. Am. Coll. Cardiol. 30, 1212–1217 (1997).

    CAS  PubMed  Google Scholar 

  60. Yoshida, M. et al. HMG-CoA reductase inhibitor modulates monocyte-endothelial cell interaction under physiological flow conditions in vitro: involvement of Rho GTPase-dependent mechanism. Arterioscler. Thromb. Vasc. Biol. 21, 1165–1171 (2001).

    CAS  PubMed  Google Scholar 

  61. Rezaie-Majd, A. et al. Simvastatin reduces the expression of adhesion molecules in circulating monocytes from hypercholesterolemic patients. Arterioscler. Thromb. Vasc. Biol. 23, 397–403 (2003).

    CAS  PubMed  Google Scholar 

  62. Nubel, T., Dippold, W., Kleinert, H., Kaina, B. & Fritz, G. Lovastatin inhibits Rho-regulated expression of E-selectin by TNFα and attenuates tumor cell adhesion. FASEB J. 18, 140–142 (2004).

    CAS  PubMed  Google Scholar 

  63. Sadeghi, M. M., Collinge, M., Pardi, R. & Bender, J. R. Simvastatin modulates cytokine-mediated endothelial cell adhesion molecule induction: involvement of an inhibitory G protein. J. Immunol. 165, 2712–2718 (2000).

    CAS  PubMed  Google Scholar 

  64. Prasad, R., Giri, S., Nath, N., Singh, I. & Singh, A. K. Inhibition of phosphoinositide 3 kinase-Akt (protein kinase B)-nuclear factor-κ B pathway by lovastatin limits endothelial-monocyte cell interaction. J. Neurochem. 94, 204–214 (2005).

    CAS  PubMed  Google Scholar 

  65. Morikawa, S. et al. The effect of statins on mRNA levels of genes related to inflammation, coagulation, and vascular constriction in HUVEC. J. Atheroscler. Thromb. 9, 178–183 (2002).

    CAS  PubMed  Google Scholar 

  66. Romano, M. et al. Inhibition of monocyte chemotactic protein-1 synthesis by statins. Lab. Invest. 80, 1095–1100 (2000).

    CAS  PubMed  Google Scholar 

  67. Veillard, N. R. et al. Simvastatin modulates chemokine and chemokine receptor expression by geranylgeranyl isoprenoid pathway in human endothelial cells and macrophages. Atherosclerosis 29 Nov 2005 (doi: 10.1016/j.atherosclerosis.2005.10.015).

  68. Charo, I. F. & Ransohoff, R. M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610–621 (2006).

    CAS  PubMed  Google Scholar 

  69. Allen, W. E., Jones, G. E., Pollard, J. W. & Ridley, A. J. Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J. Cell Sci. 110, 707–720 (1997).

    CAS  PubMed  Google Scholar 

  70. Shimonaka, M. et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell Biol. 161, 417–427 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bellosta, S. et al. HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscler. Thromb. Vasc. Biol. 18, 1671–1678 (1998).

    CAS  PubMed  Google Scholar 

  72. Turner, N. A., O'Regan, D. J., Ball, S. G. & Porter, K. E. Simvastatin inhibits MMP-9 secretion from human saphenous vein smooth muscle cells by inhibiting the RhoA/ROCK pathway and reducing MMP-9 mRNA levels. FASEB J. 19, 804–806 (2005).

    CAS  PubMed  Google Scholar 

  73. Wong, B. et al. Statins suppress THP-1 cell migration and secretion of matrix metalloproteinase 9 by inhibiting geranylgeranylation. J. Leukoc. Biol. 69, 959–962 (2001).

    CAS  PubMed  Google Scholar 

  74. Ganné, F. et al. Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits urokinase/urokinase-receptor expression and MMP-9 secretion by peripheral blood monocytes: a possible protective mechanism against atherothrombosis. Thromb. Haemost. 84, 680–688 (2000).

    PubMed  Google Scholar 

  75. Grip, O., Janciauskiene, S. & Lindgren, S. Atorvastatin activates PPAR-γ and attenuates the inflammatory response in human monocytes. Inflamm. Res. 51, 58–62 (2002).

    CAS  PubMed  Google Scholar 

  76. Kieseier, B. C., Archelos, J. J. & Hartung, H.-P. Different effects of simvastatin and interferon β on the proteolytic activity of matrix metalloproteinases. Arch. Neurol. 61, 929–932 (2004).

    PubMed  Google Scholar 

  77. Greenwood, J., Etienne-Manneville, S., Adamson, P. & Couraud, P. O. Lymphocyte migration into the central nervous system: implication of ICAM-1 signalling at the blood-brain barrier. Vascul. Pharmacol. 38, 315–322 (2002).

    CAS  PubMed  Google Scholar 

  78. Turowski, P., Adamson, P. & Greenwood, J. Pharmacological targeting of ICAM-1 signaling in brain endothelial cells: potential for treating neuroinflammation. Cell. Mol. Neurobiol. 25, 153–170 (2005).

    CAS  PubMed  Google Scholar 

  79. Etienne, S. et al. ICAM-1 signaling pathways associated with rho activation in microvascular brain endothelial cells. J. Immunol. 161, 5755–5761 (1998).

    CAS  PubMed  Google Scholar 

  80. Adamson, P., Etienne, S., Couraud, P.-O., Calder, V. & Greenwood, J. T-lymphocyte migration through CNS endothelial cells involves signalling through endothelial ICAM-1 via a rho dependent pathway. J. Immunol. 162, 2964–2973 (1999).

    CAS  PubMed  Google Scholar 

  81. Etienne-Manneville, S. et al. ICAM-1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J. Immunol. 165, 3375–3383 (2000).

    CAS  PubMed  Google Scholar 

  82. Cook-Mills, J. M. et al. Calcium mobilization and Rac1 activation are required for VCAM-1 (vascular cell adhesion molecule-1) stimulation of NADPH oxidase activity. Biochem. J. 378, 539–547 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. van Wetering, S. et al. Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J. Cell Sci. 115, 1837–1846 (2002).

    CAS  PubMed  Google Scholar 

  84. van Wetering, S. et al. VCAM-1-mediated Rac signaling controls endothelial cell-cell contacts and leukocyte transmigration. Am. J. Physiol., Cell Physiol. 285, C343–C352 (2003).

    CAS  Google Scholar 

  85. Wagner, A. H., Kohler, T., Ruckschloss, U., Just, I. & Hecker, M. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenu ation of endothelial superoxide anion formation. Arterioscler. Thromb. Vasc. Biol. 20, 61–69 (2000).

    CAS  PubMed  Google Scholar 

  86. Collins, T. et al. Transcriptional regulation of endothelial cell adhesion molecules: NF-κ B and cytokine-inducible enhancers. FASEB J. 9, 899–909 (1995).

    CAS  PubMed  Google Scholar 

  87. Braga, V. M., Del Maschio, A., Machesky, L. & Dejana, E. Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. Mol. Biol. Cell 10, 9–22 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Stamatovic, S. M., Keep, R. F., Kunkel, S. L. & Andjelkovic, A. V. Potential role of MCP-1 in endothelial cell tight junction 'opening': signaling via Rho and Rho kinase. J. Cell Sci. 116, 4615–4628 (2003).

    CAS  PubMed  Google Scholar 

  89. Bath, P. M. W., Hassall, D. G., Gladwin, A.-M., Palmer, R. M. J. & Martin, J. F. Nitric oxide and prostacyclin: divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arterioscler. Thromb. 11, 254–260 (1991).

    CAS  PubMed  Google Scholar 

  90. Kubes, P., Suzuki, M. & Granger, D. N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl Acad. Sci. USA 88, 4651–4655 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Takahashi, M. et al. Nitric oxide attenuates adhesion molecule expression in human endothelial cells. Cytokine 8, 817–821 (1996).

    CAS  PubMed  Google Scholar 

  92. Spiecker, M., Peng, H. B. & Liao, J. K. Inhibition of endothelial vascular cell adhesion molecule-1 expression by nitric oxide involves the induction and nuclear translocation of IκBα. J. Biol. Chem. 272, 30969–30974 (1997).

    CAS  PubMed  Google Scholar 

  93. De Caterina, R. et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. Clin. Invest. 96, 60–68 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Laufs, U., La Fata, V., Plutzky, J. & Liao, J. K. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97, 1129–1135 (1998).

    CAS  PubMed  Google Scholar 

  95. Kureishi, Y. et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nature Med. 6, 1004–1010 (2000).

    CAS  PubMed  Google Scholar 

  96. Xenos, E. S., Stevens, S. L., Freeman, M. B., Cassada, D. C. & Goldman, M. H. Nitric oxide mediates the effect of fluvastatin on intercellular adhesion molecule-1 and platelet endothelial cell adhesion molecule-1 expression on human endothelial cells. Ann. Vasc. Surg. 19, 386–392 (2005).

    PubMed  Google Scholar 

  97. Hernandez-Perera, O. et al. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J. Clin. Invest. 101, 2711–2719 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Endres, M. et al. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc. Natl Acad. Sci. USA 95, 8880–8885 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Laufs, U. & Liao, J. K. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J. Biol. Chem. 273, 24266–24271 (1998).

    CAS  PubMed  Google Scholar 

  100. Zuckerbraun, B. S., Barbato, J. E., Hamilton, A., Sebti, S. & Tzeng, E. Inhibition of geranylgeranyl transferase I decreases generation of vascular reactive oxygen species and increases vascular nitric oxide production. J. Surg. Res. 124, 256–263 (2005).

    CAS  PubMed  Google Scholar 

  101. Sena, A., Pedrosa, R. & Morais, M. G. Therapeutic potential of lovastatin in multiple sclerosis. J. Neurol. 250, 754–755 (2003).

    CAS  PubMed  Google Scholar 

  102. McCarey, D. W. et al. Trial of atorvastatin in rheumatoid arthritis (TARA): double-blind, randomised placebo-controlled trial. Lancet 363, 2015–2021 (2004). A randomized 6-month double-blind placebo-controlled trial in patients with rheumatoid arthritis showing that atorvastatin had a significant effect on disease activity.

    CAS  PubMed  Google Scholar 

  103. Abud-Mendoza, C. et al. Therapy with statins in patients with refractory rheumatic diseases: a preliminary study. Lupus 12, 607–611 (2003).

    CAS  PubMed  Google Scholar 

  104. Mason, R. P., Walter, M. F., Day, C. A. & Jacob, R. F. Intermolecular differences of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors contribute to distinct pharmacologic and pleiotropic actions. Am. J. Cardiol. 96, 11F–23F (2005).

    CAS  PubMed  Google Scholar 

  105. Stüve, O. et al. Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. J. Clin. Invest. 116, 1037–1044 (2006).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.G. acknowledges support from The Wellcome Trust and Multiple Sclerosis Society (UK). L.S. acknowledges the support of the National Institutes of Heath, the National Multiple Sclerosis Society and the Phil N. Allen Trust. S.S.Z. is funded by the National Institutes of Heath, the National Multiple Sclerosis Society, The Dana Foundation and the Maisin Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Greenwood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Medscape Drug Reference

Atorvastatin

Lovastatin

Simvastatin

OMIM

multiple sclerosis

systemic lupus erythematosus

FURTHER INFORMATION

John Greenwood's homepage

Lawrence Steinman's laboratory

Scott S. Zamvil's homepage

Glossary

Hypercholesterolaemia

A clinical condition in which there is abnormally high circulating levels of blood cholesterol, which can be a significant contributing factor towards cardiovascular disease.

Low-density lipoprotein (LDL) cholesterol

Cholesterol is carried in the blood by proteins in the form of lipoproteins. There are five different lipoproteins, with cardiovascular risk associated with high circulating levels of LDL cholesterol.

Prenylation

Prenylation (or isoprenylation) is the post-translational modification of a protein through the addition of an isoprenoid lipid; namely the 15-carbon farnesyl or 20-carbon geranylgeranyl lipid moiety derived from the cholesterol synthesis pathway.

Lipophilicity

The measure of a molecules ability to dissolve in lipid (oil) as opposed to water. Lipophilic or 'lipid-loving' molecules show a preference for dissolving in lipids.

Outside–in signalling

The initiation of an intracellular signalling pathway through extracellular ligand engagement of a cell-surface receptor.

Gadolinium-enhancing lesions

Damaged areas (lesions) detected by magnetic resonance imaging (MRI) that have been enhanced by the intravenous administration of a contrast agent (gadolinium) to increase the sensitivity of MRI scans.

Expanded disability status scale (EDSS) score

A widely used neurological and functional scoring system for judging the clinical status of people with multiple sclerosis.

Rhabdomyolysis

Severe muscle toxicity resulting in the breakdown of muscle fibres. A potential side-effect of statins, either in monotherapy or in combination therapy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenwood, J., Steinman, L. & Zamvil, S. Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol 6, 358–370 (2006). https://doi.org/10.1038/nri1839

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1839

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing