Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis

Abstract

We used the Immunochip array to analyze 2,816 individuals with juvenile idiopathic arthritis (JIA), comprising the most common subtypes (oligoarticular and rheumatoid factor–negative polyarticular JIA), and 13,056 controls. We confirmed association of 3 known JIA risk loci (the human leukocyte antigen (HLA) region, PTPN22 and PTPN2) and identified 14 loci reaching genome-wide significance (P < 5 × 10−8) for the first time. Eleven additional new regions showed suggestive evidence of association with JIA (P < 1 × 10−6). Dense mapping of loci along with bioinformatics analysis refined the associations to one gene in each of eight regions, highlighting crucial pathways, including the interleukin (IL)-2 pathway, in JIA disease pathogenesis. The entire Immunochip content, the HLA region and the top 27 loci (P < 1 × 10−6) explain an estimated 18, 13 and 6% of the risk of JIA, respectively. In summary, this is the largest collection of JIA cases investigated so far and provides new insight into the genetic basis of this childhood autoimmune disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manhattan plot of association statistics for oligoarticular and RF-negative polyarticular juvenile idiopathic arthritis risk loci.
Figure 2: Association results for the HLA region (chromosome 6, 25–34 Mb).

Similar content being viewed by others

References

  1. Ravelli, A. & Martini, A. Juvenile idiopathic arthritis. Lancet 369, 767–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Prahalad, S. et al. Quantification of the familial contribution to juvenile idiopathic arthritis. Arthritis Rheum. 62, 2525–2529 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Prahalad, S., Shear, E.S., Thompson, S.D., Giannini, E.H. & Glass, D.N. Increased prevalence of familial autoimmunity in simplex and multiplex families with juvenile rheumatoid arthritis. Arthritis Rheum. 46, 1851–1856 (2002).

    Article  PubMed  Google Scholar 

  4. Petty, R.E. et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J. Rheumatol. 31, 390–392 (2004).

    PubMed  Google Scholar 

  5. Thompson, S.D. et al. The susceptibility loci juvenile idiopathic arthritis shares with other autoimmune diseases extend to PTPN2, COG6, and ANGPT1. Arthritis Rheum. 62, 3265–3276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thompson, S.D. et al. Genome-wide association analysis of juvenile idiopathic arthritis identifies a new susceptibility locus at chromosomal region 3q13. Arthritis Rheum. 64, 2781–2791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hinks, A. et al. Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: further support that PTPN22 is an autoimmunity gene. Arthritis Rheum. 52, 1694–1699 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Prahalad, S. et al. Variants in TNFAIP3, STAT4, and C12orf30 loci associated with multiple autoimmune diseases are also associated with juvenile idiopathic arthritis. Arthritis Rheum. 60, 2124–2130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hinks, A. et al. Association of the IL2RA/CD25 gene with juvenile idiopathic arthritis. Arthritis Rheum. 60, 251–257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hinks, A. et al. Overlap of disease susceptibility loci for rheumatoid arthritis and juvenile idiopathic arthritis. Ann. Rheum. Dis. 69, 1049–1053 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Hinks, A. et al. Association of the CCR5 gene with juvenile idiopathic arthritis. Genes Immun. 11, 584–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hinks, A. et al. Association of the AFF3 gene and IL2/IL21 gene region with juvenile idiopathic arthritis. Genes Immun. 11, 194–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Albers, H.M. et al. Association of the autoimmunity locus 4q27 with juvenile idiopathic arthritis. Arthritis Rheum. 60, 901–904 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Prahalad, S. et al. Association of two functional polymorphisms in the CCR5 gene with juvenile rheumatoid arthritis. Genes Immun. 7, 468–475 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cortes, A. & Brown, M.A. Promise and pitfalls of the Immunochip. Arthritis Res. Ther. 13, 101 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hollenbach, J.A. et al. Juvenile idiopathic arthritis and HLA class I and class II interactions and age-at-onset effects. Arthritis Rheum. 62, 1781–1791 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thomson, W. et al. Juvenile idiopathic arthritis classified by the ILAR criteria: HLA associations in UK patients. Rheumatology (Oxford) 41, 1183–1189 (2002).

    Article  CAS  Google Scholar 

  18. Vang, T. et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet. 37, 1317–1319 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Remmers, E.F. et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 357, 977–986 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, J.Z. et al. Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nat. Genet. 44, 1137–1141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Juran, B.D. et al. Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Hum. Mol. Genet. 21, 5209–5221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trynka, G. et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat. Genet. 43, 1193–1201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin, Y. et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat. Genet. 44, 676–680 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coenen, M.J. et al. Common and different genetic background for rheumatoid arthritis and coeliac disease. Hum. Mol. Genet. 18, 4195–4203 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Barrett, J.C. et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 41, 703–707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alcina, A. et al. The autoimmune disease–associated KIF5A, CD226 and SH2B3 gene variants confer susceptibility for multiple sclerosis. Genes Immun. 11, 439–445 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Eyre, S. et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 44, 1336–1340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsoi, L.C. et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44, 1341–1348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. King, D.C. et al. Evaluation of regulatory potential and conservation scores for detecting cis-regulatory modules in aligned mammalian genome sequences. Genome Res. 15, 1051–1060 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andrés, A.M. et al. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet. 6, e1001157 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Cooper, J.D. et al. Seven newly identified loci for autoimmune thyroid disease. Hum. Mol. Genet. 21, 5202–5208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hinks, A. et al. Investigation of rheumatoid arthritis susceptibility loci in juvenile idiopathic arthritis confirms high degree of overlap. Ann. Rheum. Dis. 71, 1117–1121 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Stranger, B.E. et al. Patterns of cis regulatory variation in diverse human populations. PLoS Genet. 8, e1002639 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dimas, A.S. et al. Common regulatory variation impacts gene expression in a cell type–dependent manner. Science 325, 1246–1250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ramensky, V., Bork, P. & Sunyaev, S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 30, 3894–3900 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rasmussen, A. et al. The lupus family registry and repository. Rheumatology (Oxford) 50, 47–59 (2011).

    Article  Google Scholar 

  40. Karlson, E.W. et al. A connective tissue disease screening questionnaire for population studies. Ann. Epidemiol. 5, 297–302 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Gaffney, P.M. et al. Genome screening in human systemic lupus erythematosus: results from a second Minnesota Cohort and combined analyses of 187 sib-pair families. Am. J. Hum. Genet. 66, 547–556 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Packham, J.C. & Hall, M.A. Long-term follow-up of 246 adults with juvenile idiopathic arthritis: functional outcome. Rheumatology (Oxford) 41, 1428–1435 (2002).

    Article  CAS  Google Scholar 

  43. Adib, N. et al. Association between duration of symptoms and severity of disease at first presentation to paediatric rheumatology: results from the Childhood Arthritis Prospective Study. Rheumatology (Oxford) 47, 991–995 (2008).

    Article  CAS  Google Scholar 

  44. Moncrieffe, H. et al. Generation of novel pharmacogenomic candidates in response to methotrexate in juvenile idiopathic arthritis: correlation between gene expression and genotype. Pharmacogenet. Genomics 20, 665–676 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  46. Beyersdorff, A. et al. Survey of Neonates in Pomerania (SniP): a population based analysis of the mothers' quality of life after delivery with special relations to their social integration. Int. J. Public Health 53, 87–95 (2008).

    Article  PubMed  Google Scholar 

  47. Patterson, N., Price, A.L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Hosmer, D.W. & Lemeshow, S. Applied Logistic Regression (Wiley, New York, 1989).

  50. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Gilbert for preparing UK JIA case samples for genotyping and M. Ryan for preparing US JIA case samples and the Cincinnati local control samples. Genotyping of the US JIA, German JIA and respective control collections was supported by US National Institutes of Health (NIH) grants RC1-AR-058587 and U01-AI-067150S1. In addition, subject recruitment and DNA preparation in the United States was largely funded by US NIH grants N01-AR-42272, P01-AR-048929 and P30-AR-473639, with contributions from the Arthritis Foundation, The Val A. Browning Charitable Foundation in Salt Lake City, Utah, and the Marcus Foundation, Inc., in Atlanta, Georgia, as well as US NIH grants K23-AR-50177 and R01-AR-060893. The Federal Ministry of Education and Research, Germany (BMBF grants 01GM0907 and 01 ZZ 0403) supported subject recruitment and sample preparation in Germany. Genotyping of the UK JIA case samples was supported by Arthritis Research UK (grant 17552). Sparks Childhood Arthritis Response to Medication Study was funded by Sparks, UK (08ICH09) and the Big Lottery Fund, UK (RG/1/010135231). The study is on the UK Medicines for Children Research Network (MCRN) portfolio. We acknowledge support from the Wake Forest School of Medicine Center for Public Health Genomics and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS; R01-AR-057106) for computing resources and data analysis.

Control sample recruitment and genotyping originating at the Oklahoma Medical Research Foundation (OMRF) was supported in part by NIH grants N01-AR-62277, P30-GM-103510, U19-AI-082714 and P30-AR-053483 from NIAMS, the National Institute of General Medicine Sciences (NIGMS) and the National Institute of Allergy and Infectious Diseases (NIAID). The contents are solely the responsibility of the authors and do not necessarily represent the official views of these institutes or the US NIH.

We thank J. Barrett and C. Wallace for the SNP selection. We thank the Wellcome Trust Sanger Institute Genotyping Facility and, in particular, E. Gray, S. Bumpstead, D. Simpkin and H. Blackburn for typing the UK samples. We acknowledge use of DNA from the UK Blood Services collection of common controls (UKBS-CC collection), which is funded by Wellcome Trust grant 076113/C/04/Z and by a National Institute for Health Research program grant to National Health Service Blood and Transplant (RP-PG-0310-1002). We acknowledge the use of DNA from the British 1958 Birth Cohort Collection, which is funded by UK Medical Research Council grant G0000934 and Wellcome Trust grant 068545/Z/01. Genotyping of control samples was supported, in part, by grants from Juvenile Diabetes Research Foundation International (JDRF) and the US NIH (U01 DK062418).

We thank P.K. Gregersen at the Feinstein Institute for providing US control genotyping from the Genotype and Phenotype Registry supported by US NIH grant RC2AR059092. We thank the National Institute of Diabetes, Digestive and Kidney Diseases Inflammatory Bowel Disease (NIDDK IBD) Genetics Consortium for providing North American control genotyping supported by US NIH grants DK062431, DK062422, DK062420, DK062432, DK062423, DK062413 and DK062429.

We gratefully acknowledge contributions from physicians at CCHMC and collaborating clinics. We also acknowledge the assistance of S. Kramer, B. Clifford and L. Ponder in subject recruitment and coordination of clinical information at Cincinnati Children's Hospital Medical Center, the University of Utah and Emory University, respectively. The Cincinnati normal control DNA collection was supported and made available by Cincinnati Children's Hospital Medical Center.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

S.D.T., W.T., C.D.L., S.P., M.C.M., J.C. and A.H. led the study. A.H., J.C., M.C.M., C.D.L., S.P., W.T. and S.D.T. wrote the manuscript. A.H., J.C., C.D.L., M.C.M., M.S., S.P., J.B., M.E.C. and S.S. performed the data and statistical analyses. A.H. and P.M. performed the bioinformatics analysis. D.N.G., J.P.H., J.F.B., R.A., M.B., W.-M.C., P.C., P.D., S. Edkins, S. Eyre, P.M.G., S.L.G., J.M.G., S.E.H., J.A.J., M.K., K.L.M., P.A.N., S.O.-G., M.L.O., C.D.R., S.S.R., K.J.A.S., E.K.W., C.A.W., L.R.W. and P.W. contributed primarily to subject ascertainment, sample collection and/or genotyping. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Anne Hinks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A list of members and affiliations appears in the Supplementary Note.

A list of members and affiliations appears in the Supplementary Note.

A list of members and affiliations appears in the Supplementary Note.

A list of members and affiliations appears in the Supplementary Note.

A list of members and affiliations appears in the Supplementary Note.

A list of members and affiliations appears in the Supplementary Note.

A list of members and affiliations appears in the Supplementary Note.

A list of members and affiliations appears in the Supplementary Note.

A list of members and affiliations appears in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Tables 1–8 and Supplementary Figures 1–4 (PDF 3217 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinks, A., Cobb, J., Marion, M. et al. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat Genet 45, 664–669 (2013). https://doi.org/10.1038/ng.2614

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2614

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing