Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Primer: the practical use of biological markers of rheumatic and systemic inflammatory diseases

Abstract

The assessment of systemic inflammation by means of laboratory tests often complements the results of medical examination. Traditionally, the erythrocyte sedimentation rate and leukocytosis with left shift are diagnostic markers for inflammatory and infectious diseases. The levels of acute-phase proteins—especially C-reactive protein—are used to assess both the presence of inflammation and any response to treatment. The determination of C-reactive protein levels may be advised in three types of pathological situation: infection, acute or chronic inflammation, and evaluation of metabolic risk. Procalcitonin is useful as a marker of sepsis and severe infection. The concentration of serum amyloid A predicts the chances of survival of patients with secondary (AA) amyloidosis. Ferritin and its glycosylated form are of interest in the study of specific diseases such as adult-onset Still's disease. Markers of cartilage and bone turnover are complementary to these markers of inflammation. Although cytokine serum levels are transiently crucial to the generation of inflammation, their usefulness in the clinic is still under investigation. Serum concentrations of cytokine inhibitors or soluble cytokine receptors, as well as the clinical response of patients to treatment with cytokine antagonists, might generate important information for monitoring autoinflammatory diseases.

Key Points

  • Traditionally, leukocytosis with left shift and erythrocyte sedimentation rate are of diagnostic value in predicting infectious and inflammatory diseases

  • The progress of inflammation can be monitored in most conditions by determining the serum levels of C-reactive protein

  • Procalcitonin serum levels have definite advantages for the evaluation of sepsis and severe infections

  • Levels of serum amyloid A are associated with the outcome of secondary (AA) amyloidosis

  • Levels of ferritin and its glycosylated form are useful parameters in adult-onset Still's disease

  • Serum levels of soluble cytokine receptors or cytokine inhibitors, as well as the response to anticytokine treatment, may improve insight into autoinflammatory diseases

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the main cytokine pathways involved in immune-mediated inflammatory diseases

Similar content being viewed by others

References

  1. Seebach JD et al. (1997) The diagnostic value of the neutrophil left shift in predicting inflammatory and infectious disease. Am J Clin Pathol 107: 582–591

    Article  CAS  Google Scholar 

  2. Xing Z et al. (1998) IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest 101: 311–320

    Article  CAS  Google Scholar 

  3. Jones SA et al. (2001) The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB J 15: 43–58

    Article  CAS  Google Scholar 

  4. Marnell L et al. (2005) C-reactive protein: ligands, receptors and role in inflammation. Clin Immunol 117: 104–111

    Article  CAS  Google Scholar 

  5. Griselli M et al. (1999) C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction. J Exp Med 190: 1733–1740

    Article  CAS  Google Scholar 

  6. Gershov D et al. (2000) C-reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinflammatory innate immune response: implications for systemic autoimmunity. J Exp Med 192: 1353–1364

    Article  CAS  Google Scholar 

  7. Russell AI et al. (2004) Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus. Hum Mol Genet 13: 137–147

    Article  CAS  Google Scholar 

  8. Shin KC et al. (2001) Serum procalcitonin measurement for detection of intercurrent infection in febrile patients with SLE. Ann Rheum Dis 60: 988–989

    Article  CAS  Google Scholar 

  9. Pearson TA et al. (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107: 499–511

    Article  Google Scholar 

  10. Ridker PM et al. (2002) Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 347: 1557–1565

    Article  CAS  Google Scholar 

  11. Cook NK et al. (2006) The effect of including C-reactive protein in cardiovascular risk prediction model for women. Ann Intern Med 145: 21–29

    Article  CAS  Google Scholar 

  12. Folsom AR et al. (2006) An assessment of the incremental coronary risk prediction using C-reactive protein and other novel risk markers. The atherosclerosis risk in community study. Ann Intern Med 166: 1368–93

    Article  CAS  Google Scholar 

  13. Weyand CM et al. (1999) Corticosteroid requirements in polymyalgia rheumatica. Arch Intern Med 159: 577–584

    Article  CAS  Google Scholar 

  14. Pepys MB and Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111: 1805–1812

    Article  CAS  Google Scholar 

  15. Müller B et al. (2001) Ubiquitous expression of the calcitonin-I gene in multiple tissues in response to sepsis. J Clin Endocrinol Metab 86: 396–404

    PubMed  Google Scholar 

  16. Müller B et al. (2004) Limits to the use of the procalcitonin level as a diagnostic marker. Clin Infect Dis 39: 1867–1868

    Article  Google Scholar 

  17. Assicot M et al. (1993) High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 341: 515–518

    Article  CAS  Google Scholar 

  18. Simon L et al. (2004) Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis 39: 206–217

    Article  CAS  Google Scholar 

  19. Nishikura T (1999) Procalcitonin (PCT) production in a thyroidectomized patient. Intensive Care Med 25: 1031

    Article  CAS  Google Scholar 

  20. Nylen E et al. (2003) The future diagnostic role of procalcitonin levels: the need for improved sensitivity. Clin Infect Dis 36: 823–824

    Article  Google Scholar 

  21. Delèvaux I et al. (2003) Can procalcitonin measurement help in differentiating between bacterial infection and other kinds of inflammatory processes? Ann Rheum Dis 62: 337–340

    Article  Google Scholar 

  22. Arkader R et al. (2006) Procalcitonin does discriminate between sepsis and systemic inflammatory response syndrome. Arch Dis Child 91: 117–120

    Article  CAS  Google Scholar 

  23. Richard-Lenoble D et al. (1997) Changes in procalcitonin and interleukin 6 levels among treated African patients with different clinical forms of malaria. Trans R Soc Trop Med Hyg 91: 305–306

    Article  CAS  Google Scholar 

  24. Schwenger V et al. (1998) CRP levels in autoimmune disease can be specified by measurement of procalcitonin. Infection 26: 274–276

    Article  CAS  Google Scholar 

  25. Scire CA et al. (2006) Diagnostic value of procalcitonin measurement in febrile patients with systemic autoimmune diseases. Clin Exp Rheumatol 24: 123–128

    CAS  PubMed  Google Scholar 

  26. Malle E and De Beer FC (1996) Human serum amyloid A (SAA) protein: a prominent acute-phase reactant for clinical practice. Eur J Clin Invest 26: 427–435

    Article  CAS  Google Scholar 

  27. Tam SP et al. (2002) Promoting export of macrophage cholesterol: the physiological role of a major acute-phase protein, serum amyloid A. J Lipid Res 43: 1410–1420

    Article  CAS  Google Scholar 

  28. Thorn CF et al. (2004) Regulation of the human acute phase serum amyloid A genes by tumour necrosis factor-alpha, interleukin-6 and glucocorticoids in hepatic and epithelial cell lines. Scand J Immunol 59: 152–158

    Article  CAS  Google Scholar 

  29. Mullan RH et al. (2006) Acute-phase serum amyloid A stimulation of angiogenesis, leukocyte recruitment, and matrix degradation in rheumatoid arthritis through an NF-kappaB-dependent signal transduction pathway. Arthritis Rheum 54: 105–114

    Article  CAS  Google Scholar 

  30. Yamada T et al. (2001) Relative serum amyloid A (SAA) values: the influence of SAA1 genotypes and corticosteroid treatment in Japanese patients with rheumatoid arthritis. Ann Rheum Dis 60: 124–127

    Article  CAS  Google Scholar 

  31. Gillmore JD et al. (2001) Amyloid load and clinical outcome in AA amyloidosis in relation to circulating concentration of serum amyloid A protein. Lancet 358: 24–29

    Article  CAS  Google Scholar 

  32. Efthimiou P et al. (2006) Diagnosis and management of adult onset Still's disease. Ann Rheum Dis 65: 564–572

    Article  CAS  Google Scholar 

  33. Fautrel B et al. (2001) Diagnostic value of ferritin and glycosylated ferritin in adult onset Still's disease. J Rheumatol 28: 322–329

    CAS  PubMed  Google Scholar 

  34. Kawaguchi Y et al. (2001) Interleukin-18 as a novel diagnostic marker and indicator of disease severity in adult-onset Still's disease. Arthritis Rheum 44: 1716–1717

    Article  CAS  Google Scholar 

  35. Navarro MA et al. (2005) Immune-regulation of the apolipoprotein A-I/C-III/A-IV gene cluster in experimental inflammation. Cytokine 31: 52–63

    Article  CAS  Google Scholar 

  36. Nofer JR et al. (2006) Low density lipoproteins inhibit the Na+/H+ antiport in human platelets via activation of p38MAP kinase. Biochem Biophys Res Commun 340: 751–757

    Article  CAS  Google Scholar 

  37. Hyka N et al. (2001) Apolipoprotein A-I inhibits the production of interleukin-1β and tumor necrosis factor-alpha by blocking contact-mediated activation of monocytes by T lymphocytes. Blood 97: 2381–2389

    Article  CAS  Google Scholar 

  38. Chait A et al. (2005) Thematic review series: The immune system and atherogenesis. Lipoprotein-associated inflammatory proteins: markers or mediators of cardiovascular disease? J Lipid Res 46: 389–403

    Article  CAS  Google Scholar 

  39. Ansell BJ et al. (2005) High-density lipoprotein function recent advances. J Am Coll Cardiol 46: 1792–1798

    Article  CAS  Google Scholar 

  40. Chenaud C et al. (2004) Low apolipoprotein A-I level at intensive care unit admission and systemic inflammatory response syndrome exacerbation. Crit Care Med 32: 632–637

    Article  CAS  Google Scholar 

  41. Marchesi S et al. (2005) Acute inflammatory state during influenza infection and endothelial function. Atherosclerosis 178: 345–350

    Article  CAS  Google Scholar 

  42. Lahita RG et al. (1993) Low levels of total cholesterol, high-density lipoprotein, and apolipoprotein A1 in association with anticardiolipin antibodies in patients with systemic lupus erythematosus. Arthritis Rheum 36: 1566–1574

    Article  CAS  Google Scholar 

  43. Park YB et al. (1999) Lipid profiles in untreated patients with rheumatoid arthritis. J Rheumatol 26: 1701–1704

    CAS  PubMed  Google Scholar 

  44. Möller B and Villiger P (2006) Inhibition of IL-1, IL-6, and TNF-alpha in immune mediated inflammatory diseases. Spinger Semin Immun 27: 391–408

    Article  Google Scholar 

  45. Roux-Lombard P et al. (1993) Soluble tumor necrosis factor receptors in human inflammatory synovial fluids. Arthritis Rheum 36: 485–489

    Article  CAS  Google Scholar 

  46. Gabay C et al. (1997) Circulating levels of tumor necrosis factor soluble receptors in systemic lupus erythematosus are significantly higher than in other rheumatic diseases and correlate with disease activity. J Rheumatol 24: 303–308

    CAS  PubMed  Google Scholar 

  47. Hull KM et al. (2002) The TNF receptor-associated periodic syndrome (TRAPS): emerging concepts of an autoinflammatory disorder. Medicine (Baltimore) 81: 349–368

    Article  CAS  Google Scholar 

  48. Drewe E et al. (2004) Treatment of renal amyloidosis with etanercept in tumour necrosis factor receptor-associated periodic syndrome. Rheumatology (Oxford) 43: 1405–1408

    Article  CAS  Google Scholar 

  49. Stojanov S and Kastner DL (2005) Familial autoinflammatory diseases: genetics, pathogenesis and treatment. Curr Opin Rheumatol 17: 586–599

    Article  CAS  Google Scholar 

  50. Seckinger P et al. (1987) A urine inhibitor of interleukin-1 activity that blocks ligand binding. J Immunol 139: 1546–1549

    CAS  PubMed  Google Scholar 

  51. Dinarello CA (2005) Blocking IL-1 in systemic inflammation. J Exp Med 201: 1355–1359

    Article  CAS  Google Scholar 

  52. Sturfelt G et al. (1997) Low levels of interleukin-1 receptor antagonist coincide with kidney involvement in systemic lupus erythematosus. Br J Rheumatol 36: 1283–1289

    Article  CAS  Google Scholar 

  53. Miki C et al. (2005) Deficiency in systemic interleukin-1 receptor antagonist production as an operative risk factor in malnourished elderly patients with colorectal carcinoma. Crit Care Med 33: 177–180

    Article  CAS  Google Scholar 

  54. Weiss G and Goodnough LT (2005) Anemia of chronic disease. N Engl J Med 352: 1011–1023

    Article  CAS  Google Scholar 

  55. Punzi L et al. (2005) New biochemical insights into the pathogenesis of osteoarthritis and the role of laboratory investigations in clinical assessment. Crit Rev Clin Lab Sci 42: 279–309

    Article  CAS  Google Scholar 

  56. Garnero P (2006) Biochemical markers in osteoarthritis: will they measure up? Nat Clin Pract Rheumatol 2: 116–117

    Article  CAS  Google Scholar 

  57. Saxne T et al. (2006). Biomarkers for cartilage and bone in rheumatoid arthritis. In Rheumatoid Arthritis: New Frontiers in Pathogenesis and Treatment, edn 2 301–313 (eds Firestein GS et al.) Oxford: Oxford University Press

    Google Scholar 

  58. Roux-Lombard P et al. (2001) Cytokines, metalloproteinases, their inhibitors and cartilage oligomeric matrix protein: relationship to radiological progression and inflammation in early rheumatoid arthritis. A prospective 5-year study. Rheumatology 40: 544–551

    Article  CAS  Google Scholar 

  59. Van der Pouw Kraan TC et al. (2007) Rheumatoid arthritis subtypes identified by genomic profiling of peripheral blood cells: assignment of a type I interferon signature in a subpopulation of patients. Ann Rheum Dis [doi: 10.1136/ard.2006.063412]

  60. Duff GW (2000) Genetic variations in cytokines and relevance to inflammation and diseases. In The Cytokine network frontiers in molecular biology, (vol 25) 152 (ed Balkwill F) Oxford: Oxford University Press

    Google Scholar 

  61. Chen H et al. (2006) Single nucleotide polymorphisms in the human interleukin-1B gene affect transcription according to haplotype context. Human Mol Gen 15: 519–529

    Article  CAS  Google Scholar 

  62. Hueber W and Robinson WH (2006) Proteomic biomarkers for autoimmune disease. Proteomics 6: 4100–4105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F Wollheim and T Saxne for their helpful advice about markers of cartilage and bone turnover.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Dayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dayer, E., Dayer, JM. & Roux-Lombard, P. Primer: the practical use of biological markers of rheumatic and systemic inflammatory diseases. Nat Rev Rheumatol 3, 512–520 (2007). https://doi.org/10.1038/ncprheum0572

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum0572

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing