Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Additive effects of the major risk alleles of IRF5 and STAT4 in primary Sjögren's syndrome

Abstract

Primary Sjögren's syndrome (SS) shares many features with systemic lupus erythematosus (SLE). Here we investigated the association of the three major polymorphisms in IRF5 and STAT4 found to be associated with SLE, in patients from Sweden and Norway with primary SS. These polymorphisms are a 5-bp CGGGG indel in the promoter of IRF5, the single nucleotide polymorphism (SNP) rs10488631 downstream of IRF5 and the STAT4 SNP rs7582694, which tags the major risk haplotype of STAT4. We observed strong signals for association between all three polymorphisms and primary SS, with odds ratios (ORs) >1.4 and P-values <0.01. We also found a strong additive effect of the three risk alleles of IRF5 and STAT4 with an overall significance between the number of risk alleles and primary SS of P=2.5 × 10−9. The OR for primary SS increased in an additive manner, with an average increase in OR of 1.78. For carriers of two risk alleles, the OR for primary SS is 1.43, whereas carriers of five risk alleles have an OR of 6.78. IRF5 and STAT4 are components of the type I IFN system, and our findings emphasize the importance of this system in the etiopathogenesis of primary SS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Jonsson R, Bolstad AI, Brokstad KA, Brun JG . Sjögren's syndrome—a plethora of clinical and immunological phenotypes with a complex genetic background. Ann NY Acad Sci 2007; 1108: 433–447.

    Article  CAS  Google Scholar 

  2. Manoussakis MN, Georgopoulou C, Zintzaras E, Spyropoulou M, Stavropoulou A, Skopouli FN et al. Sjögren's syndrome associated with systemic lupus erythematosus: clinical and laboratory profiles and comparison with primary Sjögren's syndrome. Arthritis Rheum 2004; 50: 882–891.

    Article  Google Scholar 

  3. Korman BD, Alba MI, Le JM, Alevizos I, Smith JA, Nikolov NP et al. Variant form of STAT4 is associated with primary Sjögren's syndrome. Genes Immun 2008; 9: 267–270.

    Article  CAS  Google Scholar 

  4. Miceli-Richard C, Comets E, Loiseau P, Puechal X, Hachulla E, Mariette X . Association of an IRF5 gene functional polymorphism with Sjögren's syndrome. Arthritis Rheum 2007; 56: 3989–3994.

    Article  CAS  Google Scholar 

  5. Båve U, Nordmark G, Lövgren T, Rönnelid J, Cajander S, Eloranta M-L et al. Activation of the type I interferon system in primary Sjögren's syndrome—a possible etiopathogenic mechanism. Arthritis Rheum 2005; 52: 1185–1195.

    Article  Google Scholar 

  6. Gottenberg J-E, Cagnard N, Lucchesi C, Letourneur F, Mistou S, Lazure T et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren's syndrome. Proc Natl Acad Sci USA 2006; 103: 2770–2775.

    Article  CAS  Google Scholar 

  7. Hjelmervik TOR, Petersen K, Jonassen I, Jonsson R, Bolstad AI . Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren's syndrome patients from healthy control subjects. Arthritis Rheum 2005; 52: 1534–1544.

    Article  CAS  Google Scholar 

  8. Niewold TB, Rivera TL, Buyon JP, Crow MK . Serum type I interferon activity is dependent on maternal diagnosis in anti-SSA/Ro-positive mothers of children with neonatal lupus. Arthritis Rheum 2008; 58: 541–546.

    Article  CAS  Google Scholar 

  9. Rönnblom L, Eloranta M-L, Alm GV . The type I interferon system in systemic lupus erythematosus. Arthritis Rheum 2006; 54: 408–420.

    Article  Google Scholar 

  10. Lövgren T, Eloranta M-L, Kastner B, Wahren-Herlenius M, Alm GV, Rönnblom L . Induction of interferon-alpha by immune complexes or liposomes containing systemic lupus erythematosus autoantigen- and Sjögren's syndrome autoantigen-associated RNA. Arthritis Rheum 2006; 54: 1917–1927.

    Article  Google Scholar 

  11. Barnes BJ, Kellum MJ, Pinder KE, Frisancho JA, Pitha PM . Interferon regulatory factor 5, a novel mediator of cell cycle arrest and cell death. Cancer Res 2003; 63: 6424–6431.

    CAS  Google Scholar 

  12. Kaplan MH . STAT4: a critical regulator of inflammation in vivo. Immunol Res 2005; 31: 231–242.

    Article  CAS  Google Scholar 

  13. Sigurdsson S, Göring HHH, Kristjansdottir G, Milani L, Nordmark G, Sandling JK et al. Comprehensive evaluation of the genetic variants of interferon regulatory factor 5 (IRF5) reveals a novel 5 bp length polymorphism as strong risk factor for systemic lupus erythematosus. Hum Mol Genet 2008; 17: 872–881.

    Article  CAS  Google Scholar 

  14. Graham RR, Kyogoku C, Sigurdsson S, Vlasova IA, Davies LR, Baechler EC et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci USA 2006; 104: 6758–6763.

    Article  Google Scholar 

  15. Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Beherens TW et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 2007; 357: 977–986.

    Article  CAS  Google Scholar 

  16. Sigurdsson S, Nordmark G, Garnier S, Grundberg E, Kwan T, Nilsson O et al. A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5. Hum Mol Genet 2008; 17: 2868–2876.

    Article  CAS  Google Scholar 

  17. The International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN), Harley JB, Alarcon-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 2008; 40: 204–209.

    Article  Google Scholar 

  18. Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 2008; 358: 900–909.

    Article  CAS  Google Scholar 

  19. Graham RR, Kozyrev SV, Baechler EC, Reddy MV, Plenge RM, Bauer JW et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 2006; 38: 550–555.

    Article  CAS  Google Scholar 

  20. Kozyrev SV, Lewen S, Reddy PMVL, Pons-Estel B, Group AC, Witte T et al. Structural insertion/deletion variation in IRF5 is associated with a risk haplotype and defines the precise IRF5 isoforms expressed in systemic lupus erythematosus. Arthritis Rheum 2007; 56: 1234–1241.

    Article  CAS  Google Scholar 

  21. Ferreiro-Neira I, Calaza M, Alonso-Perez E, Marchini M, Scorza R, Sebastiani GD et al. Opposed independent effects and epistasis in the complex association of IRF5 to SLE. Genes Immun 2007; 8: 429–438.

    Article  CAS  Google Scholar 

  22. Reddy MVPL, Velazquez-Cruz R, Baca V, Lima G, Granados J, Orozco L et al. Genetic association of IRF5 with SLE in Mexicans: higher frequency of the risk haplotype and its homozygosity then Europeans. Hum Genet 2007; 2007: 721–727.

    Article  Google Scholar 

  23. Kelly JA, Kelley JM, Kaufman KM, Kilpatrick J, Bruner GR, Merril JT et al. Interferon regulatory factor-5 is genetically associated with systemic lupus erythematosus in African Americans. Genes Immun 2008; 9: 187–194.

    Article  CAS  Google Scholar 

  24. Shin HD, Sung YK, Choi CB, Lee SO, Lee HW, Bae SC . Replication of the genetic effects of IFN regulatory factor 5 (IRF5) on systemic lupus erythematosus in a Korean population. Arthritis Res Ther 2007; 9: R32.

    Article  Google Scholar 

  25. Sigurdsson S, Padyukov L, Kurreeman FAS, Liljedahl U, Wiman A-C, Alfredsson L et al. Association of a haplotype in the promoter region of the interferon regulatory factor 5 gene with rheumatoid arthritis. Arthritis Rheum 2007; 56: 2202–2210.

    Article  CAS  Google Scholar 

  26. Dieguez-Gonzalez R, Calaza M, Perez-Pampin E, Serna ARdl, Fernandez-Gutierrez B, Castaneda S et al. Association of interferon regulatory factor 5 haplotypes, similar to that found in systemic lupus erythematosus, in a large subgroup of patients with rheumatoid arthritis. Arthritis Rheum 2008; 58: 1264–1274.

    Article  CAS  Google Scholar 

  27. Shimane K, Kochi Y, Yamada R, Okada Y, Suzuki A, Miyatake A et al. A single nucleotide polymorphism in the IRF5 promoter region is associated with susceptibility to rheumatoid arthritis in the Japanese population. Ann Rheum Dis 2008; e-pub ahead of print 13 April 2008.

  28. Dideberg V, Kristjansdottir G, Milani L, Libioulle C, Sigurdsson S, Louis E et al. An insertion-deletion polymorphism in the interferon regulatory factor 5 (IRF5) gene confers risk of inflammatory bowel disease. Hum Mol Genet 2007; 16: 3008–3016.

    Article  CAS  Google Scholar 

  29. Kristjansdottir G, Sandling JK, Bonetti A, Roos IM, Milani L, Wang C et al. Interferon regulatory factor 5 (IRF5) gene variants are associated with multiple sclerosis in three distinct populations. J Med Genet 2008; 45: 362–369.

    Article  CAS  Google Scholar 

  30. Zervou MI, Sidiropoulos P, Petraki E, Vazgiourakis V, Krasoudaki E, Raptopoulou A et al. Association of a TRAF1 and STAT4 gene polymorphism with increased risk for rheumatoid arthritis in a genetically homogenous population. Hum Immunol 2008; 69: 567–571.

    Article  CAS  Google Scholar 

  31. Palomino-Morales RJ, Rojas-Villarraga A, Gonzalez CI, Ramirez G, Anaya J-M, Martin J . STAT4 but not TRAF1/C5 variants influence the risk of developing rheumatoid arthritis and systemic lupus erythematosus in Colombians. Genes Immun 2008; 9: 379–382.

    Article  CAS  Google Scholar 

  32. Kobayashi S, Ikari K, Kaneko H, Kochi Y, Yamamoto K, Shimane K et al. Association of STAT4 with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in the Japanese population. Arthritis Rheum 2008; 58: 1940–1946.

    Article  Google Scholar 

  33. Barton A, Thompson W, Ke X, Eyre S, Hinks A, Bowes J et al. Re-evaluation of putative rheumatoid arthritis susceptibility genes in the post-genome wide association study era and hypothesis of a key pathway underlying susceptibility. Hum Mol Genet 2008; 17: 2274–2279.

    Article  CAS  Google Scholar 

  34. Orozco G, Alizadeh BZ, Delgado-Vega AM, Gonzalez-Gay MA, Balsa A, Pascual-Salcedo D et al. Association of STAT4 with rheumatoid arthritis. Arthritis Rheum 2008; 58: 1974–1980.

    Article  CAS  Google Scholar 

  35. Martinez A, Varade J, Marquez A, Cenit MC, Espino L, Perdigones N et al. Association of the STAT4 gene with increased susceptibility for some immune-mediated diseases. Arthritis Rheum 2008; 58: 2598–2602.

    Article  CAS  Google Scholar 

  36. Lee H-S, Remmers EF, Le JM, Kastner DL, Bae S-C, Gregersen PK . Association of STAT4 with rheumatoid arthritis in the Korean population. Mol Med 2007; 13: 455–460.

    Article  CAS  Google Scholar 

  37. Zervou MI, Mamoulakis D, Panierakis C, Boumpas DT, Goulielmos GN . STAT4: A risk factor for type 1 diabetes? Hum Immunol 2008; 69: 647–650.

    Article  CAS  Google Scholar 

  38. Vitali C, Bombardieri S, Jonsson R, Moutsopoulos HM, Alexander EL, Carsons SE et al. Classification criteria for Sjögren's syndrome: a revised version of the European criteria proposed by the American-European consensus group. Ann Rheum Dis 2002; 61: 554–558.

    Article  CAS  Google Scholar 

  39. Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers E, Ding B et al. TRAF1-C5 as a risk locus for rheumatoid arthritis—a genome wide study. N Engl J Med 2007; 357: 1199–1209.

    Article  CAS  Google Scholar 

  40. Chen X, Levine L, Kwok P-Y . Fluorescence polarization in homogeneous nucleic acid analysis. Genome Res 1999; 9: 492–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL et al. Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 2003; 68: 69–78.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Genotyping of the SNPs was performed by the SNP Technology Platform in Uppsala, established by funding from the Knut and Alice Wallenberg Foundation. This study was supported by the Swedish Research Council for Medicine (A-CS, LR), the Swedish Rheumatism Association (LR, ET), the King Gustaf V 80-year Foundation (LR), Ulla and Roland Gustafsson Foundation (LR) and the Strategic Research Program at Helse Bergen, Helse Vest and the Broegelmann Foundation (JGB, RJ). GN has received a postdoctoral grant from Astrid Karlsson Foundation, ET has received a postdoctoral grant from Anna-Greta Crafoord Foundation and from the Malmö University Hospital Cancer Foundation. We thank Snaevar Sigurdsson for genotyping the 563 Swedish controls, Anders Lundmark for help with statistical analysis, and Rezvan Kiani, Linda Öjkvist, Hawa Camara, Käth Nilsson and Raul Figueroa for collecting patient samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Nordmark.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordmark, G., Kristjansdottir, G., Theander, E. et al. Additive effects of the major risk alleles of IRF5 and STAT4 in primary Sjögren's syndrome. Genes Immun 10, 68–76 (2009). https://doi.org/10.1038/gene.2008.94

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.94

Keywords

This article is cited by

Search

Quick links