Skip to main content

Advertisement

Log in

Psoriatic arthritis: Current topics

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Psoriatic arthritis is a common inflammatory arthropathy that occurs in approximately 25% of psoriasis patients. Due to significant advances in therapeutics—mainly the advent of biologic therapy—the disease has been subject to intense investigation recently. This review summarizes recent investigations of disease pathogenesis and clinical treatment. Clinical responses to tumor necrosis factor-blocking agents appear robust and superior to traditional disease-modifying drug responses, whereas other interventions, such as costimulation blockade, require more investigation. The pathogenesis of the disease appears related to T helper 17-polarized immune responses that target skin, joints, and the enthesial compartment. Finally, new insights into the disorder’s genetic antecedents are emerging as more cohorts of patients undergo advanced genetic screening methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Moll JM, Wright V: Psoriatic arthritis. Semin Arthritis Rheum 1973, 3:55–78.

    Article  PubMed  CAS  Google Scholar 

  2. Taylor W, Gladman D, Helliwell P, et al.: Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum 2006, 54:2665–2673.

    Article  PubMed  Google Scholar 

  3. Sattar N, McCarey DW, Capell H, McInnes IB: Explaining how “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 2003, 108:2957–2963.

    Article  PubMed  Google Scholar 

  4. Peters MJ, van der Horst-Bruinsma IE, Dijkmans BA, Nurmohamed MT: Cardiovascular risk profile of patients with spondylarthropathies, particularly ankylosing spondylitis and psoriatic arthritis. Semin Arthritis Rheum 2004, 34:585–592.

    Article  PubMed  Google Scholar 

  5. Ali Y, Tom BD, Schentag CT, et al.: Improved survival in psoriatic arthritis with calendar time. Arthritis Rheum 2007, 56:2708–2714.

    Article  PubMed  Google Scholar 

  6. Gladman DD, Farewell VT, Wong K, Husted J: Mortality studies in psoriatic arthritis: results from a single outpatient center. II. Prognostic indicators for death, Arthritis Rheum 1998, 41:1103–1110.

    Article  PubMed  CAS  Google Scholar 

  7. Gonzalez-Juanatey C, Llorca J, Miranda-Filloy JA, et al.: Endothelial dysfunction in psoriatic arthritis patients without clinically evident cardiovascular disease or classic atherosclerosis risk factors. Arthritis Rheum 2007, 57:287–293.

    Article  PubMed  CAS  Google Scholar 

  8. Gonzalez-Juanatey C, Llorca J, Amigo-Diaz E, et al.: High prevalence of subclinical atherosclerosis in psoriatic arthritis patients without clinically evident cardiovascular disease or classic atherosclerosis risk factors. Arthritis Rheum 2007, 57:1074–1080.

    Article  PubMed  Google Scholar 

  9. Sattar N, Crompton P, Cherry L, et al.: Effects of tumor necrosis factor blockade on cardiovascular risk factors in psoriatic arthritis: a double-blind, placebo-controlled study. Arthritis Rheum 2007, 56:831–839.

    Article  PubMed  CAS  Google Scholar 

  10. Black RL, O’Brien WM, Vanscott EJ, et al.: Methotrexate therapy in psoriatic arthritis; double-blind study on 21 patients. JAMA 1964, 189:743–747.

    PubMed  CAS  Google Scholar 

  11. Willkens RF, Williams HJ, Ward JR, et al.: Randomized, double-blind, placebo controlled trial of low-dose pulse methotrexate in psoriatic arthritis. Arthritis Rheum 1984, 27:376–381.

    Article  PubMed  CAS  Google Scholar 

  12. Kane D, Gogarty M, O’leary J, et al.: Reduction of synovial sublining layer inflammation and proinflammatory cytokine expression in psoriatic arthritis treated with methotrexate. Arthritis Rheum 2004, 50:3286–3295.

    Article  PubMed  CAS  Google Scholar 

  13. Spadaro A, Riccieri V, Sili-Scavalli A, et al.: Comparison of cyclosporin A and methotrexate in the treatment of psoriatic arthritis: a one-year prospective study. Clin Exp Rheumatol 1995, 13:589–593.

    PubMed  CAS  Google Scholar 

  14. Spadaro A, Taccari E, Mohtadi B, et al.: Life-table analysis of cyclosporin A treatment in psoriatic arthritis: comparison with other disease-modifying antirheumatic drugs. Clin Exp Rheumatol 1997, 15:609–614.

    PubMed  CAS  Google Scholar 

  15. Clegg DO, Reda DJ, Abdellatif M: Comparison of sulfasalazine and placebo for the treatment of axial and peripheral articular manifestations of the seronegative spondylarthropathies: a Department of Veterans Affairs cooperative study. Arthritis Rheum 1999, 42:2325–2329.

    Article  PubMed  CAS  Google Scholar 

  16. Gladman DD, Blake R, Brubacher B, Farewell VT: Chloroquine therapy in psoriatic arthritis. J Rheumatol 1992, 19:1724–1726.

    PubMed  CAS  Google Scholar 

  17. Kaltwasser JP, Nash P, Gladman D, et al: Efficacy and safety of leflunomide in the treatment of psoriatic arthritis and psoriasis: a multinational, double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum 2004, 50:1939–1950.

    Article  PubMed  CAS  Google Scholar 

  18. Antoni CE, Kavanaugh A, Kirkham B, et al.: Sustained benefits of infliximab therapy for dermatologic and articular manifestations of psoriatic arthritis: results from the infliximab multinational psoriatic arthritis controlled trial (IMPACT). Arthritis Rheum 2005, 52:1227–1236. [Erratum in: Arthritis Rheum 2005, 52:2951.]

    Article  PubMed  CAS  Google Scholar 

  19. Kavanaugh A, Krueger GG, Beutler A, et al.: Infliximab maintains a high degree of clinical response in patients with active psoriatic arthritis through 1 year of treatment: results from the IMPACT 2 trial. Ann Rheum Dis 2007, 66:498–505.

    Article  PubMed  CAS  Google Scholar 

  20. van der Heijde D, Kavanaugh A, Gladman DD, et al.: Infliximab inhibits progression of radiographic damage in patients with active psoriatic arthritis through one year of treatment: Results from the induction and maintenance psoriatic arthritis clinical trial 2. Arthritis Rheum 2007, 56:2698–2707.

    Article  PubMed  CAS  Google Scholar 

  21. Gladman DD, Mease PJ, Ritchlin CT, et al.: Adalimumab for long-term treatment of psoriatic arthritis: forty-eight week data from the adalimumab effectiveness in psoriatic arthritis trial. Arthritis Rheum 2007, 56:476–488.

    Article  PubMed  CAS  Google Scholar 

  22. Gladman DD, Mease PJ, Cifaldi MA, et al.: Adalimumab improves joint-related and skin-related functional impairment in patients with psoriatic arthritis: patient-reported outcomes of the Adalimumab Effectiveness in Psoriatic Arthritis Trial. Ann Rheum Dis 2007, 66:163–168.

    Article  PubMed  CAS  Google Scholar 

  23. Mease PJ, Kivitz AJ, Burch FX, et al: Etanercept treatment of psoriatic arthritis: safety, efficacy, and effect on disease progression. Arthritis Rheum 2004, 50:2264–2272.

    Article  PubMed  CAS  Google Scholar 

  24. Mease PJ, Kivitz AJ, Burch FX, et al.: Continued inhibition of radiographic progression in patients with psoriatic arthritis following 2 years of treatment with etanercept. J Rheumatol 2006, 33:712–721.

    PubMed  CAS  Google Scholar 

  25. Mease PJ, Gladman DD, Keystone EC, Alefacept in Psoriatic Arthritis Study Group: Alefacept in combination with methotrexate for the treatment of psoriatic arthritis: results of a randomized, double-blind, placebo-controlled study. Arthritis Rheum 2006, 54:1638–1645.

    Article  PubMed  CAS  Google Scholar 

  26. Wang P, Wu P, Siegel MI, et al.: Interleukin (IL)-10 inhibits nuclear factor k B (NF k B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem 1995, 270:9558–9563.

    Article  PubMed  CAS  Google Scholar 

  27. Buelens C, Willems F, Delvaux A, et al.: Interleukin-10 differentially regulates B7-1 (CD80) and B7-2 (CD86) expression on human peripheral blood dendritic cells. Eur J Immunol 1995, 25:2668–2672.

    Article  PubMed  CAS  Google Scholar 

  28. Chang CH, Furue M, Tamaki K: B7-1 expression of Langerhans cells is up-regulated by proinflammatory cytokines, and is down-regulated by interferon-g or by interleukin-10. Eur J Immunol 1995, 25:394–398.

    Article  PubMed  CAS  Google Scholar 

  29. Groux H, O’Garra A, Bigler M, et al.: A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997, 389:737–742.

    Article  PubMed  CAS  Google Scholar 

  30. Asadullah K, Sterry W, Stephanek K, et al.: IL-10 is a key cytokine in psoriasis. Proof of principle by IL-10 therapy: a new therapeutic approach. J Clin Invest 1998, 101:783–794.

    Article  PubMed  CAS  Google Scholar 

  31. Chang C, Magracheva E, Kozlov S, et al.: Crystal structure of interleukin-19 defines a new subfamily of helical cytokines. J Biol Chem 2003, 278:3308–3313.

    Article  PubMed  CAS  Google Scholar 

  32. Romer J, Hasselager E, Norby PL, et al.: Epidermal overexpression of interleukin-19 and-20 mRNA in psoriatic skin disappears after short-term treatment with cyclosporine a or calcipotriol. J Invest Dermatol 2003, 121:1306–1311.

    Article  PubMed  CAS  Google Scholar 

  33. Sa SM, Valdez PA, Wu J, et al.: The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol 2007, 178:2229–2240.

    PubMed  CAS  Google Scholar 

  34. Chan JR, Blumenschein W, Murphy E, et al.: IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 2006, 203:2577–2587.

    Article  PubMed  CAS  Google Scholar 

  35. Liao YC, Liang WG, Chen FW, et al.: IL-19 induces production of IL-6 and TNF-a and results in cell apoptosis through TNF-a. J Immunol 2002, 169:4288–4297.

    PubMed  CAS  Google Scholar 

  36. Parrish-Novak J, Xu W, Brender T, et al.: Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem 2002, 277:47517–47523.

    Article  PubMed  CAS  Google Scholar 

  37. Zheng Y, Danilenko DM, Valdez P, et al.: Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 2007, 445:648–651.

    Article  PubMed  CAS  Google Scholar 

  38. Hor S, Pirzer H, Dumoutier L, et al.: The T-cell lymphokine interleukin-26 targets epithelial cells through the interleukin-20 receptor 1 and interleukin-10 receptor 2 chains. J Biol Chem 2004, 279:33343–33351.

    Article  PubMed  CAS  Google Scholar 

  39. Curran SA, FitzGerald OM, Costello PJ, et al.: Nucleotide sequencing of psoriatic arthritis tissue before and during methotrexate administration reveals a complex inflammatory T cell infiltrate with very few clones exhibiting features that suggest they drive the inflammatory process by recognizing autoantigens. J Immunol 2004, 172:1935–1944.

    PubMed  CAS  Google Scholar 

  40. Tassiulas I, Duncan SR, Centola M, et al.: Clonal characteristics of T cell infiltrates in skin and synovium of patients with psoriatic arthritis. Hum Immunol 1999, 60:479–491.

    Article  PubMed  CAS  Google Scholar 

  41. Yawalkar N, Karlen S, Hunger R, et al.: Expression of interleukin-12 is increased in psoriatic skin. J Invest Dermatol 1998, 111:1053–1057.

    Article  PubMed  CAS  Google Scholar 

  42. Krueger GG, Langley RG, Leonardi C, et al.: A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N Engl J Med 2007, 356:580–592.

    Article  PubMed  CAS  Google Scholar 

  43. Chan JR, Blumenschein W, Murphy E, et al.: IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 2006, 203:2577–2587.

    Article  PubMed  CAS  Google Scholar 

  44. Reich K, Hassffmeier U, Kassnig IR, et al.: TNF polymorphisms in psoriasis: association of psoriatic arthritis with the promoter polymorphism TNF*-857 independent of the PSORS1 risk allele. Arthritis Rheum 2007, 56:2056–2064.

    Article  PubMed  CAS  Google Scholar 

  45. Rahman P, Siannis F, Butt C, et al.: TNFalpha polymorphisms and risk of psoriatic arthritis. Ann Rheum Dis 2006, 65:919–923.

    Article  PubMed  CAS  Google Scholar 

  46. Rahman P, Sun S, Peddle L, et al.: Association between the interleukin-1 family gene cluster and psoriatic arthritis. Arthritis Rheum 2006, 54:2321–2325.

    Article  PubMed  CAS  Google Scholar 

  47. Ho PY, Barton A, Worthington J, et al.: HLA-Cw6 and HLA-DRB1*07 together are associated with less severe joint disease in psoriatic arthritis. Ann Rheum Dis 2007, 66:807–811.

    Article  PubMed  CAS  Google Scholar 

  48. Butt C, Lim S, Greenwood C, Rahman P: VEGF, FGF1, FGF2 and EGF gene polymorphisms and psoriatic arthritis. BMC Musculoskelet Disord 2007, 8:1.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain B. McInnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarey, D., McInnes, I.B. Psoriatic arthritis: Current topics. Curr Rheumatol Rep 9, 442–448 (2007). https://doi.org/10.1007/s11926-007-0072-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-007-0072-4

Keywords

Navigation