Skip to main content

Advertisement

Log in

Examining the Link Between Bariatric Surgery, Bone Loss, and Osteoporosis: a Review of Bone Density Studies

  • Review
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

As the popularity of bariatric surgery to treat morbid obesity has risen, so has a concern of increased skeletal fragility secondary to accelerated bone loss following bariatric procedures. We reviewed cross-sectional and prospective literature reporting bone density outcomes following bariatric surgical treatment for morbid obesity. Prospective research provides evidence of hip and lumbar spine areal bone mineral density (aBMD) reductions primarily in women despite calcium and vitamin D supplementation. Femoral neck aBMD declines of 9–11% and lumbar spine aBMD reductions up to 8% were observed at the first post-operative year following malabsorptive procedures. Mean T- and Z-scores up to 25 years following surgery remained within normal and healthy ranges. Of those studies reporting development of osteoporosis following gastric bypass, one woman became osteoporotic after 1 year. Despite observed bone loss in the hip region post-surgery, data do not conclusively support increased incidence of osteoporosis or increased fracture risk in post-bariatric patients. However, given the limitations of dual energy X-ray absorptiometry technology in this population and the relative lack of long-term prospective studies that include control populations, further research is needed to provide conclusive evidence regarding fracture outcomes in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2008. Obes Surg. 2009;19(12):1605–11.

    Article  PubMed  Google Scholar 

  2. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.

    Article  PubMed  CAS  Google Scholar 

  3. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–56. e245.

    Article  PubMed  Google Scholar 

  4. Goldner WS, O’Dorisio TM, Dillon JS, et al. Severe metabolic bone disease as a long-term complication of obesity surgery. Obes Surg. 2002;12(5):685–92.

    Article  PubMed  Google Scholar 

  5. Zittel TT, Zeeb B, Maier GW, et al. High prevalence of bone disorders after gastrectomy. Am J Surg. 1997;174(4):431–8.

    Article  PubMed  CAS  Google Scholar 

  6. Parfitt AM, Podenphant J, Villanueva AR, et al. Metabolic bone disease with and without osteomalacia after intestinal bypass surgery: a bone histomorphometric study. Bone. 1985;6(4):211–20.

    Article  PubMed  CAS  Google Scholar 

  7. Ensrud KE, Ewing SK, Stone KL, et al. Intentional and unintentional weight loss increase bone loss and hip fracture risk in older women. J Am Geriatr Soc. 2003;51(12):1740–7.

    Article  PubMed  Google Scholar 

  8. Ensrud KE, Fullman RL, Barrett-Connor E, et al. Voluntary weight reduction in older men increases hip bone loss: the osteoporotic fractures in men study. J Clin Endocrinol Metab. 2005;90(4):1998–2004.

    Article  PubMed  CAS  Google Scholar 

  9. Langlois JA, Mussolino ME, Visser M, et al. Weight loss from maximum body weight among middle-aged and older white women and the risk of hip fracture: the NHANES I epidemiologic follow-up study. Osteoporos Int. 2001;12(9):763–8.

    Article  PubMed  CAS  Google Scholar 

  10. Ammann P, Rizzoli R. Bone strength and its determinants. Osteoporos Int. 2003;14 Suppl 3:S13–8.

    PubMed  Google Scholar 

  11. Lewiecki EM. Bone densitometry and vertebral fracture assessment. Curr Osteoporos Rep. 2010;8(3):123–30.

    Article  PubMed  Google Scholar 

  12. Bolotin HH. DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone. 2007;41(1):138–54.

    Article  PubMed  CAS  Google Scholar 

  13. Bolotin HH, Sievanen H, Grashuis JL. Patient-specific DXA bone mineral density inaccuracies: quantitative effects of nonuniform extraosseous fat distributions. J Bone Miner Res. 2003;18(6):1020–7.

    Article  PubMed  CAS  Google Scholar 

  14. Bolotin HH, Sievanen H, Grashuis JL, et al. Inaccuracies inherent in patient-specific dual-energy X-ray absorptiometry bone mineral density measurements: comprehensive phantom-based evaluation. J Bone Miner Res. 2001;16(2):417–26.

    Article  PubMed  CAS  Google Scholar 

  15. Formica CA, Nieves JW, Cosman F, et al. Comparative assessment of bone mineral measurements using dual X-ray absorptiometry and peripheral quantitative computed tomography. Osteoporos Int. 1998;8(5):460–7.

    Article  PubMed  CAS  Google Scholar 

  16. Shapses SA, Riedt CS. Bone, body weight, and weight reduction: what are the concerns? J Nutr. 2006;136(6):1453–6.

    PubMed  CAS  Google Scholar 

  17. Buchwald H. Metabolic surgery: a brief history and perspective. Surg Obes Relat Dis. 2010;6(2):221–2.

    Article  PubMed  Google Scholar 

  18. Spector D, Shikora S. Neuro-modulation and bariatric surgery for type 2 diabetes mellitus. Int J Clin Pract Suppl. 2010;166:53–8.

    Article  PubMed  Google Scholar 

  19. Braghetto I, Korn O, Valladares H, et al. Laparoscopic sleeve gastrectomy: surgical technique, indications and clinical results. Obes Surg. 2007;17(11):1442–50.

    Article  PubMed  Google Scholar 

  20. Brolin RE. Bariatric surgery and long-term control of morbid obesity. JAMA. 2002;288(22):2793–6.

    Article  PubMed  Google Scholar 

  21. Dallal RM, Bailey L, Guenther L, et al. Comparative analysis of short-term outcomes after bariatric surgery between two disparate populations. Surg Obes Relat Dis. 2008;4(2):110–4.

    Article  PubMed  Google Scholar 

  22. Marceau P, Biron S, Hould F, et al. Malabsorptive procedures: duodenal switch. In: Pitombo C, Jones KB, Higa KD, Pareja JC, editors. Obesity surgery principles and practice. New York: McGraw Hill Medical; 2008. p. 131–47.

    Google Scholar 

  23. Madan AK, Harper JL, Tichansky DS. Techniques of laparoscopic gastric bypass: on-line survey of American Society for Bariatric Surgery practicing surgeons. Surg Obes Relat Dis. 2008;4(2):166–72. discussion 172-163.

    Article  PubMed  Google Scholar 

  24. Saliba J, Wattacheril J, Abumrad NN. Endocrine and metabolic response to gastric bypass. Curr Opin Clin Nutr Metab Care. 2009;12(5):515–21.

    Article  PubMed  CAS  Google Scholar 

  25. Doucet E. Gastrointestinal peptides after bariatric surgery and appetite control: are they in tuning? Curr Opin Clin Nutr Metab Care. 2008;11(5):645–50.

    Article  PubMed  CAS  Google Scholar 

  26. Coates PS, Fernstrom JD, Fernstrom MH, et al. Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab. 2004;89(3):1061–5.

    Article  PubMed  CAS  Google Scholar 

  27. Gomez JM, Vilarrasa N, Masdevall C, et al. Regulation of bone mineral density in morbidly obese women: a cross-sectional study in two cohorts before and after bypass surgery. Obes Surg. 2009;19(3):345–50.

    Article  PubMed  Google Scholar 

  28. Goode LR, Brolin RE, Chowdhury HA, et al. Bone and gastric bypass surgery: effects of dietary calcium and vitamin D. Obes Res. 2004;12(1):40–7.

    Article  PubMed  CAS  Google Scholar 

  29. Bano G, Rodin DA, Pazianas M, et al. Reduced bone mineral density after surgical treatment for obesity. Int J Obes Relat Metab Disord. 1999;23(4):361–5.

    Article  PubMed  CAS  Google Scholar 

  30. Valderas JP, Velasco S, Solari S, et al. Increase of bone resorption and the parathyroid hormone in postmenopausal women in the long-term after Roux-en-Y gastric bypass. Obes Surg. 2009;19(8):1132–8.

    Article  PubMed  Google Scholar 

  31. Pereira FA, de Castro JA, dos Santos JE, et al. Impact of marked weight loss induced by bariatric surgery on bone mineral density and remodeling. Braz J Med Biol Res. 2007;40(4):509–17.

    Article  PubMed  CAS  Google Scholar 

  32. Ott MT, Fanti P, Malluche HH, et al. Biochemical evidence of metabolic bone disease in women following Roux-Y gastric bypass for morbid obesity. Obes Surg. 1992;2(4):341–8.

    Article  PubMed  Google Scholar 

  33. Beck TJ, Petit MA, Wu G, et al. Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the women’s health initiative-observational study. J Bone Miner Res. 2009;24(8):1369–79.

    Article  PubMed  Google Scholar 

  34. Wetzsteon RJ, Petit MA, Macdonald HM, et al. Bone structure and volumetric BMD in overweight children: a longitudinal study. J Bone Miner Res. 2008;23(12):1946–53.

    Article  PubMed  Google Scholar 

  35. Petit MA, Beck TJ, Hughes JM, et al. Proximal femur mechanical adaptation to weight gain in late adolescence: a six-year longitudinal study. J Bone Miner Res. 2008;23(2):180–8.

    Article  PubMed  Google Scholar 

  36. Petit MA, Beck TJ, Shults J, et al. Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents. Bone. 2005;36(3):568–76.

    Article  PubMed  Google Scholar 

  37. Travison TG, Araujo AB, Esche GR, et al. Lean mass and not fat mass is associated with male proximal femur strength. J Bone Miner Res. 2008;23(2):189–98.

    Article  PubMed  Google Scholar 

  38. Travison TG, Araujo AB, Esche GR, et al. The relationship between body composition and bone mineral content: threshold effects in a racially and ethnically diverse group of men. Osteoporos Int. 2008;19(1):29–38.

    Article  PubMed  CAS  Google Scholar 

  39. Ciangura C, Bouillot JL, Lloret-Linares C, et al. Dynamics of change in total and regional body composition after gastric bypass in obese patients. Obesity (Silver Spring). 2010;18(4):760–5.

    Article  Google Scholar 

  40. Coupaye M, Bouillot JL, Poitou C, et al. Is lean body mass decreased after obesity treatment by adjustable gastric banding? Obes Surg. 2007;17(4):427–33.

    Article  PubMed  Google Scholar 

  41. Inge T, Wilson KA, Gamm K, et al. Preferential loss of central (trunk) adiposity in adolescents and young adults after laparoscopic gastric bypass. Surg Obes Relat Dis. 2007;3(2):153–8.

    Article  PubMed  Google Scholar 

  42. Frost HM. Obesity, and bone strength and mass: a tutorial based on insights from a new paradigm. Bone. 1997;21(3):211–4.

    Article  PubMed  CAS  Google Scholar 

  43. Carrasco F, Ruz M, Rojas P, et al. Changes in bone mineral density, body composition and adiponectin levels in morbidly obese patients after bariatric surgery. Obes Surg. 2008.

  44. Johnson JM, Maher JW, Samuel I, et al. Effects of gastric bypass procedures on bone mineral density, calcium, parathyroid hormone, and vitamin D. J Gastrointest Surg. 2005;9(8):1106–10. discussion 1110–1101.

    Article  PubMed  Google Scholar 

  45. Guney E, Kisakol G, Ozgen G, et al. Effect of weight loss on bone metabolism: comparison of vertical banded gastroplasty and medical intervention. Obes Surg. 2003;13(3):383–8.

    Article  PubMed  Google Scholar 

  46. Cundy T, Evans MC, Kay RG, et al. Effects of vertical-banded gastroplasty on bone and mineral metabolism in obese patients. Br J Surg. 1996;83(10):1468–72.

    Article  PubMed  CAS  Google Scholar 

  47. Vilarrasa N, Gomez JM, Elio I, et al. Evaluation of bone disease in morbidly obese women after gastric bypass and risk factors implicated in bone loss. Obes Surg. 2009;19(7):860–6.

    Article  PubMed  Google Scholar 

  48. Fleischer J, Stein EM, Bessler M, et al. The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab. 2008;93(10):3735–40.

    Article  PubMed  CAS  Google Scholar 

  49. Giusti V, Gasteyger C, Suter M, et al. Gastric banding induces negative bone remodelling in the absence of secondary hyperparathyroidism: potential role of serum C telopeptides for follow-up. Int J Obes (Lond). 2005;29(12):1429–35.

    Article  CAS  Google Scholar 

  50. Pugnale N, Giusti V, Suter M, et al. Bone metabolism and risk of secondary hyperparathyroidism 12 months after gastric banding in obese pre-menopausal women. Int J Obes Relat Metab Disord. 2003;27(1):110–6.

    Article  PubMed  CAS  Google Scholar 

  51. von Mach MA, Stoeckli R, Bilz S, et al. Changes in bone mineral content after surgical treatment of morbid obesity. Metabolism. 2004;53(7):918–21.

    Article  Google Scholar 

  52. Marceau P, Biron S, Lebel S, et al. Does bone change after biliopancreatic diversion? J Gastrointest Surg. 2002;6(5):690–8.

    Article  PubMed  Google Scholar 

  53. Tsiftsis DD, Mylonas P, Mead N, et al. Bone mass decreases in morbidly obese women after long limb-biliopancreatic diversion and marked weight loss without secondary hyperparathyroidism. A physiological adaptation to weight loss? Obes Surg. 2009;19(11):1497–503.

    Article  PubMed  Google Scholar 

  54. Karsenty G. Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab. 2006;4(5):341–8.

    Article  PubMed  CAS  Google Scholar 

  55. Wucher H, Ciangura C, Poitou C, et al. Effects of weight loss on bone status after bariatric surgery: association between adipokines and bone markers. Obes Surg. 2008;18(1):58–65.

    Article  PubMed  Google Scholar 

  56. Gomez-Ambrosi J, Rodriguez A, Catalan V, et al. The bone–adipose axis in obesity and weight loss. Obes Surg. 2008;18(9):1134–43.

    Article  PubMed  CAS  Google Scholar 

  57. Magni P, Dozio E, Galliera E, et al. Molecular aspects of adipokine–bone interactions. Curr Mol Med. 2010;10(6):522–32.

    PubMed  CAS  Google Scholar 

  58. Beckman LM, Beckman TR, Earthman CP. Changes in gastrointestinal hormones and leptin after Roux-en-Y gastric bypass procedure: a review. J Am Diet Assoc. 2010;110(4):571–84.

    Article  PubMed  CAS  Google Scholar 

  59. Bruno C, Fulford AD, Potts JR, et al. Serum markers of bone turnover are increased at six and 18 months after Roux-en-Y bariatric surgery: correlation with the reduction in leptin. J Clin Endocrinol Metab. 2010;95(1):159–66.

    Article  PubMed  CAS  Google Scholar 

  60. Madsen OR, Jensen JE, Sorensen OH. Validation of a dual energy X-ray absorptiometer: measurement of bone mass and soft tissue composition. Eur J Appl Physiol Occup Physiol. 1997;75(6):554–8.

    Article  PubMed  CAS  Google Scholar 

  61. Mechanick JI, Kushner RF, Sugerman HJ, et al. American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery medical guidelines for clinical practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient. Obesity (Silver Spring). 2009;17 Suppl 1:S1–S70. v.

    Google Scholar 

  62. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–8.

    Article  PubMed  CAS  Google Scholar 

  63. Stein EM, Strain G, Sinha N, et al. Vitamin D insufficiency prior to bariatric surgery: risk factors and a pilot treatment study. Clin Endocrinol (Oxf). 2009;71(2):176–83.

    Article  CAS  Google Scholar 

  64. Abbasi AA, Amin M, Smiertka JK, et al. Abnormalities of vitamin D and calcium metabolism after surgical treatment of morbid obesity: a study of 136 patients. Endocr Pract. 2007;13(2):131–6.

    PubMed  Google Scholar 

  65. Vage V, Gjesdal CG, Eide GE, et al. Bone mineral density in females after jejunoileal bypass: a 25-year follow-up study. Obes Surg. 2004;14(3):305–12.

    Article  PubMed  Google Scholar 

  66. Strauss BJ, Marks SJ, Growcott JP, et al. Body composition changes following laparoscopic gastric banding for morbid obesity. Acta Diabetol. 2003;40 Suppl 1:S266–9.

    Article  PubMed  Google Scholar 

  67. Olbers T, Bjorkman S, Lindroos A, et al. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg. 2006;244(5):715–22.

    Article  PubMed  Google Scholar 

  68. Chaston TB, Dixon JB, O’Brien PE. Changes in fat-free mass during significant weight loss: a systematic review. Int J Obes (Lond). 2007;31(5):743–50.

    CAS  Google Scholar 

  69. Compher CW, Badellino KO, Boullata JI. Vitamin D and the bariatric surgical patient: a review. Obes Surg. 2008;18(2):220–4.

    Article  PubMed  Google Scholar 

  70. Manco M, Calvani M, Nanni G, et al. Low 25-hydroxyvitamin D does not affect insulin sensitivity in obesity after bariatric surgery. Obes Res. 2005;13(10):1692–700.

    Article  PubMed  CAS  Google Scholar 

  71. Halverson JD, Teitelbaum SL, Haddad JG, et al. Skeletal abnormalities after jejunoileal bypass. Ann Surg. 1979;189(6):785–90.

    Article  PubMed  CAS  Google Scholar 

  72. Mahdy T, Atia S, Farid M, et al. Effect of Roux-en Y gastric bypass on bone metabolism in patients with morbid obesity: Mansoura experiences. Obes Surg. 2008;18(12):1526–31.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

All contributing authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley M. Scibora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scibora, L.M., Ikramuddin, S., Buchwald, H. et al. Examining the Link Between Bariatric Surgery, Bone Loss, and Osteoporosis: a Review of Bone Density Studies. OBES SURG 22, 654–667 (2012). https://doi.org/10.1007/s11695-012-0596-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-012-0596-1

Keywords

Navigation