Skip to main content

Advertisement

Log in

The Effect of SHH-Gli Signaling Pathway on the Synovial Fibroblast Proliferation in Rheumatoid Arthritis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by chronic synovitis. This study aims to investigate the role of sonic hedgehog (SHH)-Gli signaling pathway in synovial fibroblast proliferation in rheumatoid arthritis. The expression of serum SHH in RA patients group was significantly increased compared with the systemic lupus erythematosus (SLE), ankylosing spondylitis (AS), and healthy subject (healthy control, HC) groups, respectively; serum SHH expression of RA patients was positively correlated with rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibodies (anti-CCP Ab), while there was no significant correlation between SHH expression and erythrocyte sedimentation rate (ESR). SHH, Ptch, Smo, and Gli molecules were highly expressed in rat RA-synovial fibroblast (RA-SF); after blocking the SHH-Gli signaling pathway with a Gli specific inhibitor, Gli-antagonist 61 (GANT61), RA-SF proliferation was inhibited in a dose-dependent manner and the apoptosis rate of RA-SF was increased as well; the expression levels of fibroblast growth factor receptor 1 (FGFR1) and FGFR3 declined in SF cells after GANT61 treatment. Our results suggest that SHH-Gli pathway is involved in the pathogenesis of RA, and blocking SHH-Gli pathway inhibits RA-SF cell proliferation and increases cell apoptosis, which may shed light on developing new ideas for RA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bartok, B., and G.S. Firestein. 2010. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunological reviews 233(1): 233–55. doi:10.1111/j.0105-2896.2009.00859.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Noss, E.H., and M.B. Brenner. 2008. The role and therapeutic implications of fibroblast-like synoviocytes in inflammation and cartilage erosion in rheumatoid arthritis. Immunological reviews 223: 252–70. doi:10.1111/j.1600-065X.2008.00648.x.

    Article  CAS  PubMed  Google Scholar 

  3. Treese, C., A. Mittag, F. Lange, A. Tarnok, A. Loesche, F. Emmrich, et al. 2008. Characterization of fibroblasts responsible for cartilage destruction in arthritis. Cytometry Part A: the journal of the International Society for Analytical Cytology 73(4): 351–60. doi:10.1002/cyto.a.20532.

    Article  CAS  Google Scholar 

  4. Tang, X., L. Deng, Q. Chen, Y. Wang, R. Xu, C. Shi, et al. 2015. Inhibition of hedgehog signaling pathway impedes cancer cell proliferation by promotion of autophagy. European journal of cell biology 94(5): 223–33. doi:10.1016/j.ejcb.2015.03.003.

    Article  CAS  PubMed  Google Scholar 

  5. Varnat, F., A. Duquet, M. Malerba, M. Zbinden, C. Mas, P. Gervaz, et al. 2009. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO molecular medicine 1(6–7): 338–51. doi:10.1002/emmm.200900039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McMillan, R., and W. Matsui. 2012. Molecular pathways: the hedgehog signaling pathway in cancer. Clinical cancer research: an official journal of the American Association for Cancer Research 18(18): 4883–8. doi:10.1158/1078-0432.CCR-11-2509.

    Article  CAS  Google Scholar 

  7. Liu, Z., T. Li, M.I. Reinhold, and M.C. Naski. 2014. MEK1-RSK2 contributes to hedgehog signaling by stabilizing GLI2 transcription factor and inhibiting ubiquitination. Oncogene 33(1): 65–73. doi:10.1038/onc.2012.544.

    Article  PubMed  Google Scholar 

  8. Li, R., L. Cai, C.M. Hu, T.N. Wu, and J. Li. 2015. Expression of hedgehog signal pathway in articular cartilage is associated with the severity of cartilage damage in rats with adjuvant-induced arthritis. Journal of inflammation. 12: 24. doi:10.1186/s12950-015-0072-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, M., S. Zhu, W. Peng, Q. Li, Z. Li, M. Luo, et al. 2014. Sonic hedgehog signaling drives proliferation of synoviocytes in rheumatoid arthritis: a possible novel therapeutic target. Journal of immunology research 2014: 401903. doi:10.1155/2014/401903.

    PubMed  PubMed Central  Google Scholar 

  10. Li, R., L. Cai, J. Ding, C.M. Hu, T.N. Wu, and X.Y. Hu. 2015. Inhibition of hedgehog signal pathway by cyclopamine attenuates inflammation and articular cartilage damage in rats with adjuvant-induced arthritis. J Pharm Pharmacol 67(7): 963–71. doi:10.1111/jphp.12379.

    Article  CAS  PubMed  Google Scholar 

  11. Weng, T., L. Yi, J. Huang, F. Luo, X. Wen, X. Du, et al. 2012. Genetic inhibition of fibroblast growth factor receptor 1 in knee cartilage attenuates the degeneration of articular cartilage in adult mice. Arthritis Rheum 64(12): 3982–92. doi:10.1002/art.34645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yan, D., D. Chen, S.M. Cool, A.J. van Wijnen, K. Mikecz, G. Murphy, et al. 2011. Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Res Ther 13(4): R130. doi:10.1186/ar3441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Scott, D.L., F. Wolfe, and T.W. Huizinga. 2010. Rheumatoid arthritis. Lancet 376(9746): 1094–108. doi:10.1016/S0140-6736(10)60826-4.

    Article  PubMed  Google Scholar 

  14. Lefevre, S., A. Knedla, C. Tennie, A. Kampmann, C. Wunrau, R. Dinser, et al. 2009. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nature medicine 15(12): 1414–20. doi:10.1038/nm.2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neumann, E., S. Lefevre, B. Zimmermann, S. Gay, and U. Muller-Ladner. 2010. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends in molecular medicine 16(10): 458–68. doi:10.1016/j.molmed.2010.07.004.

    Article  CAS  PubMed  Google Scholar 

  16. Serrati, S., F. Margheri, A. Chilla, E. Neumann, U. Muller-Ladner, M. Benucci, et al. 2011. Reduction of in vitro invasion and in vivo cartilage degradation in a SCID mouse model by loss of function of the fibrinolytic system of rheumatoid arthritis synovial fibroblasts. Arthritis and rheumatism 63(9): 2584–94. doi:10.1002/art.30439.

    Article  CAS  PubMed  Google Scholar 

  17. Rosengren, S., D.L. Boyle, and G.S. Firestein. 2007. Acquisition, culture, and phenotyping of synovial fibroblasts. Methods in molecular medicine. 135: 365–75.

    Article  PubMed  Google Scholar 

  18. Kuenzler, P., S. Kuchen, V. Rihoskova, B.A. Michel, R.E. Gay, M. Neidhart, et al. 2003. Induction of p16 at sites of cartilage invasion in the SCID mouse coimplantation model of rheumatoid arthritis. Arthritis and rheumatism 48(7): 2069–73. doi:10.1002/art.11045.

    Article  CAS  PubMed  Google Scholar 

  19. Djouad, F., L. Rackwitz, Y. Song, S. Janjanin, and R.S. Tuan. 2009. ERK1/2 activation induced by inflammatory cytokines compromises effective host tissue integration of engineered cartilage. Tissue engineering Part A 15(10): 2825–35. doi:10.1089/ten.TEA.2008.0663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pereira, J., W.E. Johnson, S.J. O’Brien, E.D. Jarvis, G. Zhang, M.T. Gilbert, et al. 2014. Evolutionary genomics and adaptive evolution of the hedgehog gene family (SHH, IHH and DHH) in vertebrates. PLoS One 9(12), e74132. doi:10.1371/journal.pone.0074132.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Walter, K., N. Omura, S.M. Hong, M. Griffith, A. Vincent, M. Borges, et al. 2010. Overexpression of smoothened activates the sonic hedgehog signaling pathway in pancreatic cancer-associated fibroblasts. Clinical cancer research: an official journal of the American Association for Cancer Research 16(6): 1781–9. doi:10.1158/1078-0432.CCR-09-1913.

    Article  CAS  Google Scholar 

  22. Dai, J., K. Ai, Y. Du, and G. Chen. 2011. Sonic hedgehog expression correlates with distant metastasis in pancreatic adenocarcinoma. Pancreas 40(2): 233–6. doi:10.1097/MPA.0b013e3181f7e09f.

    Article  CAS  PubMed  Google Scholar 

  23. Ueda, K., H. Takano, Y. Niitsuma, H. Hasegawa, R. Uchiyama, T. Oka, et al. 2010. Sonic hedgehog is a critical mediator of erythropoietin-induced cardiac protection in mice. The Journal of clinical investigation 120(6): 2016–29. doi:10.1172/JCI39896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoo, Y.A., M.H. Kang, H.J. Lee, B.H. Kim, J.K. Park, H.K. Kim, et al. 2011. Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. Cancer research 71(22): 7061–70. doi:10.1158/0008-5472.CAN-11-1338.

    Article  CAS  PubMed  Google Scholar 

  25. Srivastava, R.K., S.Z. Kaylani, N. Edrees, C. Li, S.S. Talwelkar, J. Xu, et al. 2014. GLI inhibitor GANT-61 diminishes embryonal and alveolar rhabdomyosarcoma growth by inhibiting Shh/AKT-mTOR axis. Oncotarget 5(23): 12151–65.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huang, L., V. Walter, D.N. Hayes, and M. Onaitis. 2014. Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer. Clinical cancer research: an official journal of the American Association for Cancer Research 20(6): 1566–75. doi:10.1158/1078-0432.CCR-13-2195.

    Article  CAS  Google Scholar 

  27. Wickstrom, M., C. Dyberg, T. Shimokawa, J. Milosevic, N. Baryawno, O.M. Fuskevag, et al. 2013. Targeting the hedgehog signal transduction pathway at the level of GLI inhibits neuroblastoma cell growth in vitro and in vivo. International journal of cancer Journal international du cancer 132(7): 1516–24. doi:10.1002/ijc.27820.

    Article  PubMed  Google Scholar 

  28. Mazumdar, T., J. Devecchio, A. Agyeman, T. Shi, and J.A. Houghton. 2011. Blocking hedgehog survival signaling at the level of the GLI genes induces DNA damage and extensive cell death in human colon carcinoma cells. Cancer research 71(17): 5904–14. doi:10.1158/0008-5472.CAN-10-4173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yan, M., L. Wang, H. Zuo, Z. Zhang, W. Chen, L. Mao, et al. 2011. HH/GLI signalling as a new therapeutic target for patients with oral squamous cell carcinoma. Oral oncology 47(6): 504–9. doi:10.1016/j.oraloncology.2011.03.027.

    Article  CAS  PubMed  Google Scholar 

  30. Lim, C.B., C.M. Prele, S. Baltic, P.G. Arthur, J. Creaney, D.N. Watkins, et al. 2015. Mitochondria-derived reactive oxygen species drive GANT61-induced mesothelioma cell apoptosis. Oncotarget 6(3): 1519–30.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fu, J., M. Rodova, S.K. Roy, J. Sharma, K.P. Singh, R.K. Srivastava, et al. 2013. GANT-61 inhibits pancreatic cancer stem cell growth in vitro and in NOD/SCID/IL2R gamma null mice xenograft. Cancer letters 330(1): 22–32. doi:10.1016/j.canlet.2012.11.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chenna, V., C. Hu, and S.R. Khan. 2014. Synthesis and cytotoxicity studies of hedgehog enzyme inhibitors SANT-1 and GANT-61 as anticancer agents. Journal of environmental science and health Part A, Toxic/hazardous substances & environmental engineering. 49(6): 641–7. doi:10.1080/10934529.2014.865425.

    Article  CAS  Google Scholar 

  33. Xie, J. 2008. Hedgehog signaling pathway: development of antagonists for cancer therapy. Current oncology reports 10(2): 107–13.

    Article  CAS  PubMed  Google Scholar 

  34. Ornitz, D.M. 2000. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. BioEssays: news and reviews in molecular, cellular and developmental biology. 22(2): 108–12. doi:10.1002/(SICI)1521-1878(200002)22:2<108::AID-BIES2>3.0.CO;2-M.

    Article  CAS  Google Scholar 

  35. Beenken, A., and M. Mohammadi. 2009. The FGF family: biology, pathophysiology and therapy. Nature reviews Drug discovery 8(3): 235–53. doi:10.1038/nrd2792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Powers, C.J., S.W. McLeskey, and A. Wellstein. 2000. Fibroblast growth factors, their receptors and signaling. Endocrine-related cancer 7(3): 165–97.

    Article  CAS  PubMed  Google Scholar 

  37. Saito, S., K. Morishima, T. Ui, H. Hoshino, D. Matsubara, S. Ishikawa, et al. 2015. The role of HGF/MET and FGF/FGFR in fibroblast-derived growth stimulation and lapatinib-resistance of esophageal squamous cell carcinoma. BMC cancer. 15: 82. doi:10.1186/s12885-015-1065-8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Superiority Discipline Project of Jiangsu University (2014); the Natural Science Foundation of the Jiangsu Higher Education Institutions (No15KJB310025); the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 53470217); the Training Programs of Innovation and Entrepreneurship for College Students in Jiangsu Province (No. 201510313017Z); the Talents Scientific Research Foundation of Xuzhou Medical College (No. D2015004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renxian Tang or Xiaomei Liu.

Additional information

Suping Qin and Dexu Sun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, S., Sun, D., Li, H. et al. The Effect of SHH-Gli Signaling Pathway on the Synovial Fibroblast Proliferation in Rheumatoid Arthritis. Inflammation 39, 503–512 (2016). https://doi.org/10.1007/s10753-015-0273-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0273-3

KEY WORDS

Navigation