Skip to main content
Log in

Intra- and interobserver variability in detection and assessment of calcified and noncalcified coronary artery plaques using 64-slice computed tomography

Variability in coronary plaque measurement using MSCT

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Objective Multislice computed tomography (MSCT) is an emerging noninvasive technique for detecting coronary plaques. The present study investigated agreement in the detection and characterization of coronary plaques and reproducibility of volumetric analysis. Methods A total of 20 patients underwent MSCT coronary angiography using 64 * 0.5 mm detector collimation. Two readers independently visually evaluated all MSCT datasets for the presence of coronary plaques (n = 82 in 262 coronary segments) and then classified them as calcified, mixed and noncalcified. In addition, one of the readers also manually determined total volumes as well as calcified and noncalcified volumes of each plaque. After a period of at least 4 weeks the complete volumetric analysis was repeated. Results Interobserver agreement was good for detection of coronary plaques on the segment level (weighted κ = 0.88, 95% CI [0.76, 0.95]). However, there was only moderate interobserver agreement for plaques classification (unweighted κ = 0.45, 95% CI [0.35, 0.61]). Intraobserver agreement was good for plaque detection on segment level (weighted κ = 0.90, 95% CI [0.77, 0.96]), while it was moderate with respect to their characterization (unweighted κ = 0.65, 95% CI [0.55, 0.80]). There was moderate reproducibility for total plaque volume (limits of agreement = ±6 mm3 at a mean measured volume of 10 mm3 and = ±28 mm3 at a mean measured volume of 100 mm3). Variation of relative differences significantly decreased for total volume and noncalcified volume with increasing mean volume. Conclusions Detection and volumetry of plaques by means of MSCT shows good to moderate reproducibility. Agreement of volume measurements depends on plaque size. Variation of relative differences decrease with increasing mean plaque volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MSCT:

Multislice computed tomography

IOV:

Intraobserver variability

IVUS:

Intravascular ultrasound

RCA:

Right coronary artery

LAD:

Left anterior descending artery

LCX:

Left circumflex artery

References

  1. Tunstall-Pedoe H, Kuulasmaa K, Mahonen M et al (1999) Contribution of trends in survival and coronary-event rates to changes in coronary heart disease mortality: 10-year results from 37 WHO MONICA project populations. Monitoring trends and determinants in cardiovascular disease. Lancet 353:1547–1557

    Article  PubMed  CAS  Google Scholar 

  2. Smith SC Jr, Feldman TE, Hirshfeld JW Jr et al (2006) ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to update 2001 guidelines for percutaneous coronary intervention). Circulation 113:e166–e286

    Article  PubMed  Google Scholar 

  3. Achenbach S (2006) Computed tomography coronary angiography. J Am Coll Cardiol 48:1919–1928

    Article  PubMed  Google Scholar 

  4. Leber AW, Knez A, Becker A et al (2005) Visualising noncalcified coronary plaques by CT. Int J Cardiovasc Imaging 21:55–61

    Article  PubMed  Google Scholar 

  5. Kopp AF, Schroeder S, Baumbach A et al (2001) Non-invasive characterisation of coronary lesion morphology and composition by multislice CT: first results in comparison with intracoronary ultrasound. Eur Radiol 11:1607–1611

    Article  PubMed  CAS  Google Scholar 

  6. Stary HC, Chandler AB, Dinsmore RE et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 15:1512–1531

    PubMed  CAS  Google Scholar 

  7. Stary HC (2000) Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol 20:1177–1178

    PubMed  CAS  Google Scholar 

  8. Schroeder S, Kopp AF, Baumbach A et al (2001) Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 37:1430–1435

    Article  PubMed  CAS  Google Scholar 

  9. Rodriguez-Granillo GA, Agostoni P, Garcia-Garcia HM et al (2007) Meta-analysis of the studies assessing temporal changes in coronary plaque volume using intravascular ultrasound. Am J Cardiol 99:5–10

    Article  PubMed  Google Scholar 

  10. Rodriguez-Granillo GA, Vaina S, Garcia-Garcia HM et al (2006) Reproducibility of intravascular ultrasound radiofrequency data analysis: implications for the design of longitudinal studies. Int J Cardiovasc Imaging 22:621–631

    Article  PubMed  Google Scholar 

  11. Leber AW, Knez A, White CW et al (2003) Composition of coronary atherosclerotic plaques in patients with acute myocardial infarction and stable angina pectoris determined by contrast-enhanced multislice computed tomography. Am J Cardiol 91:714–718

    Article  PubMed  Google Scholar 

  12. Hoffmann U, Moselewski F, Nieman K et al (2006) Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol 47:1655–1662

    Article  PubMed  Google Scholar 

  13. Burgstahler C, Reimann A, Beck T et al (2007) Influence of a lipid-lowering therapy on calcified and noncalcified coronary plaques monitored by multislice detector computed tomography: results of the New Age II Pilot Study. Invest Radiol 42:189–195

    Article  PubMed  CAS  Google Scholar 

  14. Dewey M, Laule M, Krug L et al (2004) Multisegment and halfscan reconstruction of 16-slice computed tomography for detection of coronary artery stenoses. Invest Radiol 39:223–229

    Article  PubMed  Google Scholar 

  15. Dewey M, Hoffmann H, Hamm B (2006) Multislice CT coronary angiography: effect of sublingual nitroglycerine on the diameter of coronary arteries. Rofo 178:600–604

    PubMed  CAS  Google Scholar 

  16. Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51:5–40

    PubMed  CAS  Google Scholar 

  17. Leber AW, Becker A, Knez A et al (2006) Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol 47:672–677

    Article  PubMed  Google Scholar 

  18. Efron B, Tibshirani R (1993) An introduction to the bootstrap. Monographs on statistics and applied probability. Chapman & Hall, New York

    Google Scholar 

  19. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    Article  PubMed  CAS  Google Scholar 

  20. Bland JM, Altman DG (2007) Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat 17:571–582

    Article  PubMed  Google Scholar 

  21. Pinheiro J, Bates D (2000) Mixed-effects models in S and S-PLUS. Statistics and computing. Springer, New York

    Google Scholar 

  22. Burgstahler C, Reimann A, Beck T et al (2006) Imaging of a regressive coronary soft plaque under lipid lowering therapy by multi-slice computed tomography. Int J Cardiovasc Imaging 22:119–121

    Article  PubMed  Google Scholar 

  23. Dewey M, Hoffmann H, Hamm B (2007) CT coronary angiography using 16 and 64 simultaneous detector rows: intraindividual comparison. Rofo 179:581–586

    PubMed  CAS  Google Scholar 

  24. Virmani R, Kolodgie FD, Burke AP et al (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    PubMed  CAS  Google Scholar 

  25. Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  PubMed  CAS  Google Scholar 

  26. Thomas CK, Muhlenbruch G, Wildberger JE et al (2006) Coronary artery calcium scoring with multislice computed tomography: in vitro assessment of a low tube voltage protocol. Invest Radiol 41:668–673

    Article  PubMed  Google Scholar 

  27. Pflederer T, Schmid M, Ropers D et al (2007) Interobserver variability of 64-slice computed tomography for the quantification of non-calcified coronary atherosclerotic plaque. Rofo

  28. Bruining N, Roelandt JR, Palumbo A et al (2007) Reproducible coronary plaque quantification by multislice computed tomography. Catheter Cardiovasc Interv 69:857–865

    Article  PubMed  Google Scholar 

  29. Schuurbiers JC, von Birgelen C, Wentzel JJ et al (2000) On the IVUS plaque volume error in coronary arteries when neglecting curvature. Ultrasound Med Biol 26:1403–1411

    Article  PubMed  CAS  Google Scholar 

  30. Ferencik M, Nieman K, Achenbach S (2006) Noncalcified and calcified coronary plaque detection by contrast-enhanced multi-detector computed tomography: a study of interobserver agreement. J Am Coll Cardiol 47:207–209

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Dewey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, H., Frieler, K., Hamm, B. et al. Intra- and interobserver variability in detection and assessment of calcified and noncalcified coronary artery plaques using 64-slice computed tomography. Int J Cardiovasc Imaging 24, 735–742 (2008). https://doi.org/10.1007/s10554-008-9299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-008-9299-z

Keywords

Navigation