Skip to main content

Advertisement

Log in

Self-expanding nitinol stents: material and design considerations

  • Vascular–Interventional
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Nitinol (nickel–titanium) alloys exhibit a combination of properties which make these alloys particularly suited for self-expanding stents. Some of these properties cannot be found in engineering materials used for stents presently. This article explains the fundamental mechanism of shape memory and superelasticity, and how they relate to the characteristic performance of self-expanding stents. Nitinol stents are manufactured to a size slightly larger than the target vessel size and delivered constrained in a delivery system. After deployment, they position themselves against the vessel wall with a low, "chronic" outward force. They resist outside forces with a significantly higher radial resistive force. Despite the high nickel content of Nitinol, its corrosion resistance and biocompatibility is equal to that of other implant materials. The most common Nitinol stents are listed and described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.

Similar content being viewed by others

References

  1. Dotter CT, Buschmann PAC, McKinney MK, Rösch J (1983) Transluminal expandable nitinol coil stent grafting: preliminary report. Radiology 147:259

    CAS  PubMed  Google Scholar 

  2. Shabalovskaya S (1996) On the nature of the biocompatibility and medical applications of NiTi shape memory and superelastic alloys. Bio Med Mat Eng 6:267

    CAS  Google Scholar 

  3. Duerig TW, Melton KN, Wayman CM, Stöckel D (1990) Engineering aspects of shape-memory alloys. Butterworth-Heinemann, London

  4. Stoeckel D (2000) Nitinol medical devices and implants. Min Invas Ther Allied Technol 9:81

    Google Scholar 

  5. ASTM F 2063–00 (2002) Standard specification for wrought nickel–titanium shape-memory alloys for medical devices and surgical implants

  6. ASTM F 2004–00 (2002) Test method for transformation temperature of nickel-titanium alloys by thermal analysis

  7. ASTM F 2082–01 (2002) Method for the determination of transformation temperature of nickel–titanium shape-memory alloys by bend and free recovery

  8. Pelton AR, DiCello J, Miyazaki S (2000) Optimisation of processing and properties of medical grade Nitinol wire. Min Invas Ther Allied Technol 9:107

    Google Scholar 

  9. Wever DJ, Veldhuizen AG, Sanders MM, Schakenraad JM (1997) Cytotoxic, allergic and genotoxic activity of a nickel–titanium alloy. Biomaterials 18:1115

    Article  CAS  PubMed  Google Scholar 

  10. Wever DJ, Veldhuizen AG, de Vries J, Busscher HJ, Uges DRA, van Horn JR (1998) Electrochemical and surface characterization of a nickel–titanium alloy. Biomaterials 19:761

    Article  CAS  PubMed  Google Scholar 

  11. Brown SA, Hughes PJ, Merritt K (1988) In vitro studies of fretting corrosion of orthopaedic materials. J Orthop Res 6:572

    CAS  PubMed  Google Scholar 

  12. Barrett RD, Bishara SE, Quinn JK (1993) Biodegradation of orthodontic appliances: part I, biodegradation of nickel and chromium in vitro. Am J Orthod Dentofac Orthop 103:8

    CAS  Google Scholar 

  13. Bishara SE, Barrett RD, Selim MI (1993) Biodegradation of orthodontic appliances. Part II: Changes in the blood level of nickel. Am J Orthod Dentofac Orthop 103:115

    CAS  Google Scholar 

  14. Ryhanen J, Niemi E, Serlo W, Niemelä E, Sandvik P, Pernu H, Salo T (1997) Biocompatibility of nickel–titanium shape-memory metal and its corrosion behavior in human cell cultures. J Biomed Mater Res 35:451

    PubMed  Google Scholar 

  15. Trepanier C, Venugopolan R, Messer R, Zimmerman J, Pelton AR (2000) Effect of passivation treatments on nickel release from Nitinol. Proc Soc Biomater:1043

    Google Scholar 

  16. ASTM F2129–01 (2002) Standard test method for conducting cyclic potentiodynamic polarization measurements to determine the corrosion susceptibility of small implant devices

  17. Trepanier C, Tabizian M, Yahia LH, Bilodeau L, Piron DL (1998) Effect of modification of oxide layer on NiTi stent corrosion resistance. J Biomed Mater Res 43:433

    Article  CAS  PubMed  Google Scholar 

  18. Trepanier C, Fino J, Zhu L, Pelton AR (2002) Corrosion resistance of oxidized Nitinol. SMST

  19. Heintz C, Riepe G, Birken L, Kaiser E, Chafke N, Morlock M, Delling G, Imig H (2001) Corroded Nitinol wires in explanted aortic endografts: an important mechanism of failure? J Endovasc Ther 8:248

    CAS  PubMed  Google Scholar 

  20. Kaiser E (2002) Cell-induced corrosion in vitro. Second European Sym Vasc Biomat, Hamburg

  21. Duerig TW, Pelton AR, Stöckel D (1996) The use of superelasticity in medicine. Metall 50:569

    CAS  Google Scholar 

  22. Duerig TW, Tolomeo DE, Wholey M (2000) An overview of superelastic stent design. Min Invas Ther Allied Technol 9:235

    Google Scholar 

  23. Harnek J, Zoucas E, Stenram U, Cwikiel W (2002) Insertion of self-expandable Nitinol stents without previous balloon angioplasty reduces restenosis compared with PTA prior to stenting. Cardiovasc Intervent Radiol 5:430

    Article  Google Scholar 

  24. Duda S, Wiskirchen J, Tepe G, Bitzer M, Kaulich TW, Stoeckel D, Claussen C (2000) Physical properties of endovascular stents: an experimental comparison. J Vasc Interv Radiol 11:645

    PubMed  Google Scholar 

  25. Sigwart U (1996) The coiled sheet concept. In: Sigwart U (ed) Endoluminal stenting. Saunders, London, pp 249–250

  26. Stoeckel D, Bonsignore C, Duda S (2002) A survey of stent designs. Min Invas Ther Allied Technol 11:137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Stoeckel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoeckel, D., Pelton, A. & Duerig, T. Self-expanding nitinol stents: material and design considerations. Eur Radiol 14, 292–301 (2004). https://doi.org/10.1007/s00330-003-2022-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-003-2022-5

Keywords

Navigation