Skip to main content

Advertisement

Log in

Vasculopathy in scleroderma

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Systemic sclerosis (SSc) is a multisystem connective tissue disorder featured by vascular injury and fibrosis of the skin and various internal organs with autoimmune background. Although the pathogenesis of SSc still remains elusive, it is generally accepted that initial vascular injury due to autoimmunity and/or environmental factors causes structural and functional abnormalities of vasculature which eventually result in the constitutive activation of fibroblasts in various organs. Structural alterations consist of destructive vasculopathy (loss of small vessels) and proliferative obliterative vasculopathy (occlusion of arterioles and small arteries with fibro-proliferative change) caused by impaired compensatory vasculogenesis and angiogenesis. Impaired function of SSc vasculature includes the altered expression of cell adhesion molecules predominantly inducing Th2 and Th17 cell infiltration, endothelial dysfunction primarily due to the low availability of nitric oxide, the activated endothelial-to-mesenchymal transition leading to fibro-proliferative vascular change and tissue fibrosis, and the impaired coagulation/fibrinolysis system promoting the formation of intravascular fibrin deposits. Recent new insights into the therapeutic mechanisms of intravenous cyclophosphamide pulse and bosentan and the establishment of a new SSc animal model (Klf5 +/−;Fli1 +/− mice) provide us useful clues to further understand the development of vascular alterations characteristic of SSc. This article overviewed the present understanding of the pathogenesis of SSc vasculopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Abraham DJ, Krieg T, Distler J, Distler O (2009) Overview of pathogenesis of systemic sclerosis. Rheumatology (Oxford) 48(Suppl 3):iii3–iii7

    CAS  Google Scholar 

  2. Asano Y (2010) Future treatments in systemic sclerosis. J Dermatol 37:54–70

    Article  CAS  PubMed  Google Scholar 

  3. Broen JC, Radstake TR, Rossato M (2014) The role of genetics and epigenetics in the pathogenesis of systemic sclerosis. Nat Rev Rheumatol 10:671–681

    Article  CAS  PubMed  Google Scholar 

  4. Prescott RJ, Freemont AJ, Jones CJ, Hoyland J, Fielding P (1992) Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol 166:255–263

    Article  CAS  PubMed  Google Scholar 

  5. Sgonc R, Gruschwitz MS, Dietrich H, Recheis H, Gershwin ME, Wick G (1996) Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma. J Clin Investig 98:785–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kalogerou A, Gelou E, Mountantonakis S, Settas L, Zafiriou E, Sakkas L (2005) Early T cell activation in the skin from patients with systemic sclerosis. Ann Rheum Dis 64:1233–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ihn H (2005) Scleroderma, fibroblasts, signaling, and excessive extracellular matrix. Curr Rheumatol Rep 7:156–162

    Article  CAS  PubMed  Google Scholar 

  8. Distler JH, Gay S, Distler O (2006) Angiogenesis and vasculogenesis in systemic sclerosis. Rheumatology (Oxford) 45(Suppl 3):iii26–iii27

    CAS  Google Scholar 

  9. Kuwana M, Okazaki Y, Yasuoka H, Kawakami Y, Ikeda Y (2004) Defective vasculogenesis in systemic sclerosis. Lancet 364:603–610

    Article  CAS  PubMed  Google Scholar 

  10. Rabquer BJ, Koch AE (2012) Angiogenesis and vasculopathy in systemic sclerosis: evolving concepts. Curr Rheumatol Rep 14:56–63

    Article  PubMed  Google Scholar 

  11. Gabrielli A, Avvedimento EV, Krieg T (2009) Scleroderma. N Engl J Med 360:1989–2003

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi T, Asano Y, Amiya E, Hatano M, Tamaki Z, Takata M et al (2014) Clinical correlation of brachial artery flow-mediated dilation in patients with systemic sclerosis. Mod Rheumatol 24:106–111

    Article  PubMed  Google Scholar 

  13. Cerinic MM, Valentini G, Sorano GG, D’Angelo S, Cuomo G, Fenu L et al (2003) Blood coagulation, fibrinolysis, and markers of endothelial dysfunction in systemic sclerosis. Semin Arthritis Rheum 32:285–295

    Article  CAS  PubMed  Google Scholar 

  14. Taniguchi T, Asano Y, Akamata K, Noda S, Takahashi T, Ichimura Y et al (2015) Fibrosis, vascular activation, and immune abnormalities resembling systemic sclerosis in bleomycin-treated Fli-1-haploinsufficient mice. Arthr Rheumatol 67:517–526

    Article  CAS  Google Scholar 

  15. Ihn H (2008) Autocrine TGF-beta signaling in the pathogenesis of systemic sclerosis. J Dermatol Sci 49:103–113

    Article  CAS  PubMed  Google Scholar 

  16. Bhattacharyya S, Kelley K, Melichian DS, Tamaki Z, Fang F, Su Y et al (2013) Toll-like receptor 4 signaling augments transforming growth factor-β responses: a novel mechanism for maintaining and amplifying fibrosis in scleroderma. Am J Pathol 182:192–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Fan PS, Kahaleh B (2006) Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum 54:2271–2279

    Article  CAS  PubMed  Google Scholar 

  18. Mavalia C, Scaletti C, Romagnani P, Carossino AM, Pignone A, Emmi L et al (1997) Type 2 helper T-cell predominance and high CD30 expression in systemic sclerosis. Am J Pathol 151:1751–1758

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Giacomelli R, Matucci-Cerinic M, Cipriani P, Ghersetich I, Lattanzio R, Pavan A et al (1998) Circulating Vdelta1+ T cells are activated and accumulate in the skin of systemic sclerosis patients. Arthritis Rheum 41:327–334

    Article  CAS  PubMed  Google Scholar 

  20. Kahaleh MB, Fan PS, Otsuka T (1999) Gammadelta receptor bearing T cells in scleroderma: enhanced interaction with vascular endothelial cells in vitro. Clin Immunol 91:188–195

    Article  CAS  PubMed  Google Scholar 

  21. Hill MB, Phipps JL, Cartwright RJ, Milford Ward A, Greaves M, Hughes P (1996) Antibodies to membranes of endothelial cells and fibroblasts in scleroderma. Clin Exp Immunol 106:491–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosenbaum J, Pottinger BE, Woo P, Black CM, Loizou S, Byron MA et al (1988) Measurement and characterisation of circulating anti-endothelial cell IgG in connective tissue diseases. Clin Exp Immunol 72:450–456

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Salojin KV, Le Tonquèze M, Saraux A, Nassonov EL, Dueymes M, Piette JC et al (1997) Antiendothelial cell antibodies: useful markers of systemic sclerosis. Am J Med 102:178–185

    Article  CAS  PubMed  Google Scholar 

  24. Sgonc R, Gruschwitz MS, Boeck G, Sepp N, Gruber J, Wick G (2000) Endothelial cell apoptosis in systemic sclerosis is induced by antibody-dependent cell-mediated cytotoxicity via CD95. Arthritis Rheum 43:2550–2562

    Article  CAS  PubMed  Google Scholar 

  25. Mihai C, Tervaert JW (2010) Anti-endothelial cell antibodies in systemic sclerosis. Ann Rheum Dis 69:319–324

    Article  CAS  PubMed  Google Scholar 

  26. Park C, Kim TM, Malik AB (2013) Transcriptional regulation of endothelial cell and vascular development. Circ Res 112:1380–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fischer C, Schneider M, Carmeliet P (2006) Principles and therapeutic implications of angiogenesis, vasculogenesis and arteriogenesis. Handb Exp Pharmacol 176:157–212

    Article  CAS  PubMed  Google Scholar 

  28. Dimmeler S, Zeiher AM, Schneider MD (2005) Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 115:572–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Prater DN, Case J, Ingram DA, Yoder MC (2007) Working hypothesis to redefine endothelial progenitor cells. Leukemia 21:1141–1149

    Article  CAS  PubMed  Google Scholar 

  30. Estes ML, Mund JA, Ingram DA, Case J (2010) Identification of endothelial cells and progenitor cell subsets in human peripheral blood. Curr Protoc Cytom Chapter 9:Unit 9.33.31-11.

  31. Richardson MR, Yoder MC (2011) Endothelial progenitor cells: quo vadis? J Mol Cell Cardiol 50:266–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamaguchi Y, Okazaki Y, Seta N, Satoh T, Takahashi K, Ikezawa Z et al (2010) Enhanced angiogenic potency of monocytic endothelial progenitor cells in patients with systemic sclerosis. Arthritis Res Ther 12:R205

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yamaguchi Y, Kuwana M (2013) Proangiogenic hematopoietic cells of monocytic origin: roles in vascular regeneration and pathogenic processes of systemic sclerosis. Histol Histopathol 28:175–183

    CAS  PubMed  Google Scholar 

  34. Lau LF (2011) CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci 68:3149–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grote K, Salguero G, Ballmaier M, Dangers M, Drexler H, Schieffer B (2007) The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: potential role in angiogenesis and endothelial regeneration. Blood 110:877–885

    Article  CAS  PubMed  Google Scholar 

  36. Saigusa R, Asano Y, Taniguchi T, Yamashita T, Takahashi T, Ichimura Y et al (2015) A possible contribution of endothelial CCN1 downregulation due to Fli1 deficiency to the development of digital ulcers in systemic sclerosis. Exp Dermatol 24:127–132

    Article  CAS  PubMed  Google Scholar 

  37. Distler O, Del Rosso A, Giacomelli R, Cipriani P, Conforti ML, Guiducci S et al (2002) Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. Arthritis Res 4:R11

    Article  PubMed  PubMed Central  Google Scholar 

  38. Michalska-Jakubus M, Kowal-Bielecka O, Chodorowska G, Bielecki M, Krasowska D (2011) Angiopoietins-1 and -2 are differentially expressed in the sera of patients with systemic sclerosis: high angiopoietin-2 levels are associated with greater severity and higher activity of the disease. Rheumatology (Oxford) 50:746–755

    Article  CAS  Google Scholar 

  39. Fleming JN, Nash RA, McLeod DO, Fiorentino DF, Shulman HM, Connolly MK et al (2008) Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS One 3, e1452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Asano Y, Stawski L, Hant F, Highland K, Silver R, Szalai G et al (2010) Endothelial Fli1 deficiency impairs vascular homeostasis: a role in scleroderma vasculopathy. Am J Pathol 176:1983–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Noda S, Asano Y, Takahashi T, Akamata K, Aozasa N, Taniguchi T et al (2013) Decreased cathepsin V expression due to Fli1 deficiency contributes to the development of dermal fibrosis and proliferative vasculopathy in systemic sclerosis. Rheumatology (Oxford) 52:790–799

    Article  CAS  Google Scholar 

  42. Noda S, Asano Y, Akamata K, Aozasa N, Taniguchi T, Takahashi T et al (2012) A possible contribution of altered cathepsin B expression to the development of skin sclerosis and vasculopathy in systemic sclerosis. PLoS One 7, e32272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takahashi T, Asano Y, Noda S, Aozasa N, Akamata K, Taniguchi T et al (2015) A possible contribution of lipocalin-2 to the development of dermal fibrosis, pulmonary vascular involvement, and renal dysfunction in systemic sclerosis. Br J Dermatol. doi:10.1111/bjd.13779

    Google Scholar 

  44. Thalgott J, Dos-Santos-Luis D, Lebrin F (2015) Pericytes as targets in hereditary hemorrhagic telangiectasia. Front Genet 6:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tan FK, Zhou X, Mayes MD, Gourh P, Guo X, Marcum C et al (2006) Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology (Oxford) 45:694–702

    Article  CAS  Google Scholar 

  46. Yoshizaki A, Yanaba K, Iwata Y, Komura K, Ogawa A, Akiyama Y et al (2010) Cell adhesion molecules regulate fibrotic process via Th1/Th2/Th17 cell balance in a bleomycin-induced scleroderma model. J Immunol 185:2502–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Higashi-Kuwata N, Jinnin M, Makino T, Fukushima S, Inoue Y, Muchemwa FC et al (2010) Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis. Arthritis Res Ther 12:R128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yukawa S, Yamaoka K, Sawamukai N, Shimajiri S, Kubo S, Miyagawa I et al (2013) Dermal mast cell density in fingers reflects severity of skin sclerosis in systemic sclerosis. Mod Rheumatol 23:1151–1157

    Article  CAS  PubMed  Google Scholar 

  49. Matsushita T, Hasegawa M, Hamaguchi Y, Takehara K, Sato S (2006) Longitudinal analysis of serum cytokine concentrations in systemic sclerosis: association of interleukin 12 elevation with spontaneous regression of skin sclerosis. J Rheumatol 33:275–284

    CAS  PubMed  Google Scholar 

  50. Yang X, Yang J, Xing X, Wan L, Li M (2014) Increased frequency of Th17 cells in systemic sclerosis is related to disease activity and collagen overproduction. Arthritis Res Ther 16:R4

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sato S, Hasegawa M, Takehara K (2001) Serum levels of interleukin-6 and interleukin-10 correlate with total skin thickness score in patients with systemic sclerosis. J Dermatol Sci 27:140–146

    Article  CAS  PubMed  Google Scholar 

  52. Nakashima T, Jinnin M, Yamane K, Honda N, Kajihara I, Makino T et al (2012) Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. J Immunol 188:3573–3583

    Article  CAS  PubMed  Google Scholar 

  53. Chizzolini C, Rezzonico R, Ribbens C, Burger D, Wollheim FA, Dayer JM (1998) Inhibition of type I collagen production by dermal fibroblasts upon contact with activated T cells: different sensitivity to inhibition between systemic sclerosis and control fibroblasts. Arthritis Rheum 41:2039–2047

    Article  CAS  PubMed  Google Scholar 

  54. Chizzolini C, Parel Y, De Luca C, Tyndall A, Akesson A, Scheja A et al (2003) Systemic sclerosis Th2 cells inhibit collagen production by dermal fibroblasts via membrane-associated tumor necrosis factor alpha. Arthritis Rheum 48:2593–2604

    Article  CAS  PubMed  Google Scholar 

  55. Chizzolini C (1999) T lymphocyte and fibroblast interactions: the case of skin involvement in systemic sclerosis and other examples. Springer Semin Immunopathol 21:431–450

    Article  CAS  PubMed  Google Scholar 

  56. Ihn H, Sato S, Fujimoto M, Kikuchi K, Kadono T, Tamaki K et al (1997) Circulating intercellular adhesion molecule-1 in the sera of patients with systemic sclerosis: enhancement by inflammatory cytokines. Br J Rheumatol 36:1270–1275

    Article  CAS  PubMed  Google Scholar 

  57. Sfikakis PP, Tesar J, Baraf H, Lipnick R, Klipple G, Tsokos GC (1993) Circulating intercellular adhesion molecule-1 in patients with systemic sclerosis. Clin Immunol Immunopathol 68:88–92

    Article  CAS  PubMed  Google Scholar 

  58. Ihn H, Sato S, Fujimoto M, Takehara K, Tamaki K (1998) Increased serum levels of soluble vascular cell adhesion molecule-1 and E-selectin in patients with systemic sclerosis. Br J Rheumatol 37:1188–1192

    Article  CAS  PubMed  Google Scholar 

  59. Shahin AA, Anwar S, Elawar AH, Sharaf AE, Hamid MA, Eleinin AA et al (2000) Circulating soluble adhesion molecules in patients with systemic sclerosis: correlation between circulating soluble vascular cell adhesion molecule-1 (sVCAM-1) and impaired left ventricular diastolic function. Rheumatol Int 20:21–24

    Article  CAS  PubMed  Google Scholar 

  60. Kuryliszyn-Moskal A, Klimiuk PA, Sierakowski S (2005) Soluble adhesion molecules (sVCAM-1, sE-selectin), vascular endothelial growth factor (VEGF) and endothelin-1 in patients with systemic sclerosis: relationship to organ systemic involvement. Clin Rheumatol 24:111–116

    Article  PubMed  Google Scholar 

  61. Kizu A, Medici D, Kalluri R (2009) Endothelial-mesenchymal transition as a novel mechanism for generating myofibroblasts during diabetic nephropathy. Am J Pathol 175:1371–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E et al (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13:952–961

    Article  CAS  PubMed  Google Scholar 

  63. Li J, Qu X, Bertram JF (2009) Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol 175:1380–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hashimoto N, Phan SH, Imaizumi K, Matsuo M, Nakashima H, Kawabe T et al (2010) Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 43:161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jimenez SA (2013) Role of endothelial to mesenchymal transition in the pathogenesis of the vascular alterations in systemic sclerosis. ISRN Rheumatol 2013:835948

    Article  PubMed  PubMed Central  Google Scholar 

  66. Li Z, Jimenez SA (2011) Protein kinase Cδ and c-Abl kinase are required for transforming growth factor β induction of endothelial-mesenchymal transition in vitro. Arthritis Rheum 63:2473–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. ten Freyhaus H, Dumitrescu D, Bovenschulte H, Erdmann E, Rosenkranz S (2009) Significant improvement of right ventricular function by imatinib mesylate in scleroderma-associated pulmonary arterial hypertension. Clin Res Cardiol 98:265–267

    Article  PubMed  Google Scholar 

  68. Sfikakis PP, Gorgoulis VG, Katsiari CG, Evangelou K, Kostopoulos C, Black CM (2008) Imatinib for the treatment of refractory, diffuse systemic sclerosis. Rheumatology (Oxford) 47:735–737

    Article  CAS  Google Scholar 

  69. ten Freyhaus H, Dumitrescu D, Berghausen E, Vantler M, Caglayan E, Rosenkranz S (2012) Imatinib mesylate for the treatment of pulmonary arterial hypertension. Expert Opin Investig Drugs 21:119–134

    Article  PubMed  CAS  Google Scholar 

  70. Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID et al (1992) Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340:1111–1115

    Article  CAS  PubMed  Google Scholar 

  71. Joannides R, Haefeli WE, Linder L, Richard V, Bakkali EH, Thuillez C et al (1995) Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation 91:1314–1319

    Article  CAS  PubMed  Google Scholar 

  72. Peng X, Haldar S, Deshpande S, Irani K, Kass DA (2003) Wall stiffness suppresses Akt/eNOS and cytoprotection in pulse-perfused endothelium. Hypertension 41:378–381

    Article  CAS  PubMed  Google Scholar 

  73. Li M, Chiou KR, Bugayenko A, Irani K, Kass DA (2005) Reduced wall compliance suppresses Akt-dependent apoptosis protection stimulated by pulse perfusion. Circ Res 97:587–595

    Article  CAS  PubMed  Google Scholar 

  74. Lekakis J, Papamichael C, Mavrikakis M, Voutsas A, Stamatelopoulos S (1998) Effect of long-term estrogen therapy on brachial arterial endothelium-dependent vasodilation in women with Raynaud’s phenomenon secondary to systemic sclerosis. Am J Cardiol 82(1555–1557):A8

    Google Scholar 

  75. Lekakis J, Mavrikakis M, Papamichael C, Papazoglou S, Economou O, Scotiniotis I et al (1998) Short-term estrogen administration improves abnormal endothelial function in women with systemic sclerosis and Raynaud’s phenomenon. Am Heart J 136:905–912

    Article  CAS  PubMed  Google Scholar 

  76. Szucs G, Tímár O, Szekanecz Z, Dér H, Kerekes G, Szamosi S et al (2007) Endothelial dysfunction precedes atherosclerosis in systemic sclerosis—relevance for prevention of vascular complications. Rheumatology (Oxford) 46:759–762

    Article  CAS  Google Scholar 

  77. Bartoli F, Blagojevic J, Bacci M, Fiori G, Tempestini A, Conforti ML et al (2007) Flow-mediated vasodilation and carotid intima-media thickness in systemic sclerosis. Ann N Y Acad Sci 1108:283–290

    Article  PubMed  Google Scholar 

  78. Rollando D, Bezante GP, Sulli A, Balbi M, Panico N, Pizzorni C et al (2010) Brachial artery endothelial-dependent flow-mediated dilation identifies early-stage endothelial dysfunction in systemic sclerosis and correlates with nailfold microvascular impairment. J Rheumatol 37:1168–1173

    Article  PubMed  Google Scholar 

  79. Rossi P, Granel B, Marziale D, Le Mée F, Francès Y (2010) Endothelial function and hemodynamics in systemic sclerosis. Clin Physiol Funct Imaging 30:453–459

    Article  PubMed  Google Scholar 

  80. Cypiene A, Laucevicius A, Venalis A, Dadoniene J, Ryliskyte L, Petrulioniene Z et al (2008) The impact of systemic sclerosis on arterial wall stiffness parameters and endothelial function. Clin Rheumatol 27:1517–1522

    Article  PubMed  Google Scholar 

  81. Giannattasio C, Pozzi M, Gardinali M, Gradinali M, Montemerlo E, Citterio F et al (2007) Effects of prostaglandin E1alpha cyclodextrin [corrected] treatment on endothelial dysfunction in patients with systemic sclerosis. J Hypertens 25:793–797

    Article  CAS  PubMed  Google Scholar 

  82. Cotton SA, Herrick AL, Jayson MI, Freemont AJ (1999) Endothelial expression of nitric oxide synthases and nitrotyrosine in systemic sclerosis skin. J Pathol 189:273–278

    Article  CAS  PubMed  Google Scholar 

  83. Dooley A, Gao B, Bradley N, Abraham DJ, Black CM, Jacobs M et al (2006) Abnormal nitric oxide metabolism in systemic sclerosis: increased levels of nitrated proteins and asymmetric dimethylarginine. Rheumatology (Oxford) 45:676–684

    Article  CAS  Google Scholar 

  84. Andersen GN, Mincheva-Nilsson L, Kazzam E, Nyberg G, Klintland N, Petersson AS et al (2002) Assessment of vascular function in systemic sclerosis: indications of the development of nitrate tolerance as a result of enhanced endothelial nitric oxide production. Arthritis Rheum 46:1324–1332

    Article  CAS  PubMed  Google Scholar 

  85. Yamane K, Miyauchi T, Suzuki N, Yuhara T, Akama T, Suzuki H et al (1992) Significance of plasma endothelin-1 levels in patients with systemic sclerosis. J Rheumatol 19(10):1566–1571

    CAS  PubMed  Google Scholar 

  86. Vancheeswaran R, Magoulas T, Efrat G, Wheeler-Jones C, Olsen I, Penny R et al (1994) Circulating endothelin-1 levels in systemic sclerosis subsets—a marker of fibrosis or vascular dysfunction? J Rheumatol 21:1838–1844

    CAS  PubMed  Google Scholar 

  87. Marvi U, Chung L (2010) Digital ischemic loss in systemic sclerosis. Int J Rheumatol. doi:10.1155/2010/130717

    PubMed  PubMed Central  Google Scholar 

  88. Kahaleh MB (1994) Raynaud’s phenomenon and vascular disease in scleroderma. Curr Opin Rheumatol 6:621–627

    Article  CAS  PubMed  Google Scholar 

  89. Chung L, Fiorentino D (2006) Digital ulcers in patients with systemic sclerosis. Autoimmun Rev 5:125–128

    Article  PubMed  Google Scholar 

  90. Schiopu E, Impens AJ, Phillips K (2010) Digital ischemia in scleroderma spectrum of diseases. Int J Rheumatol. doi:10.1155/2010/923743

    PubMed  PubMed Central  Google Scholar 

  91. Noda S, Asano Y, Nishimura S, Taniguchi T, Fujiu K, Manabe I et al (2014) Simultaneous downregulation of KLF5 and Fli1 is a key feature underlying systemic sclerosis. Nat Commun 5:5797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kundi R, Hollenbeck ST, Yamanouchi D, Herman BC, Edlin R, Ryer EJ et al (2009) Arterial gene transfer of the TGF-beta signalling protein Smad3 induces adaptive remodelling following angioplasty: a role for CTGF. Cardiovasc Res 84:326–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tashkin DP, Elashoff R, Clements PJ, Goldin J, Roth MD, Furst DE et al (2006) Cyclophosphamide versus placebo in scleroderma lung disease. N Engl J Med 354:2655–2666

    Article  CAS  PubMed  Google Scholar 

  94. Hoyles RK, Ellis RW, Wellsbury J, Lees B, Newlands P, Goh NS et al (2006) A multicenter, prospective, randomized, double-blind, placebo-controlled trial of corticosteroids and intravenous cyclophosphamide followed by oral azathioprine for the treatment of pulmonary fibrosis in scleroderma. Arthritis Rheum 54:3962–3970

    Article  CAS  PubMed  Google Scholar 

  95. Mouthon L, Berezne A, Guillevin L, Valeyre D (2010) Therapeutic options for systemic sclerosis related interstitial lung diseases. Respir Med 104(Suppl 1):S59–S69

    Article  PubMed  Google Scholar 

  96. Sakkas LI, Chikanza IC, Platsoucas CD (2006) Mechanisms of disease: the role of immune cells in the pathogenesis of systemic sclerosis. Nat Clin Pract Rheumatol 2:679–685

    Article  CAS  PubMed  Google Scholar 

  97. Casale R, Generini S, Luppi F, Pignone A, Matucci-Cerinic M (2004) Pulse cyclophosphamide decreases sympathetic postganglionic activity, controls alveolitis, and normalizes vascular tone dysfunction (Raynaud’s phenomenon) in a case of early systemic sclerosis. Arthritis Rheum 51:665–669

    Article  PubMed  Google Scholar 

  98. Apras S, Ertenli I, Ozbalkan Z, Kiraz S, Ozturk MA, Haznedaroglu IC et al (2003) Effects of oral cyclophosphamide and prednisolone therapy on the endothelial functions and clinical findings in patients with early diffuse systemic sclerosis. Arthritis Rheum 48:2256–2261

    Article  CAS  PubMed  Google Scholar 

  99. Caramaschi P, Volpe A, Pieropan S, Tinazzi I, Mahamid H, Bambara LM et al (2009) Cyclophosphamide treatment improves microvessel damage in systemic sclerosis. Clin Rheumatol 28:391–395

    Article  PubMed  Google Scholar 

  100. Furuya Y, Okazaki Y, Kaji K, Sato S, Takehara K, Kuwana M (2010) Mobilization of endothelial progenitor cells by intravenous cyclophosphamide in patients with systemic sclerosis. Rheumatology (Oxford) 49:2375–2380

    Article  CAS  Google Scholar 

  101. Penn H, Quillinan N, Khan K, Chakravarty K, Ong VH, Burns A et al (2013) Targeting the endothelin axis in scleroderma renal crisis: rationale and feasibility. QJM 106:839–848

    Article  CAS  PubMed  Google Scholar 

  102. Frerix M, Stegbauer J, Dragun D, Kreuter A, Weiner SM (2012) Ulnar artery occlusion is predictive of digital ulcers in SSc: a duplex sonography study. Rheumatology (Oxford) 51:735–742

    Article  Google Scholar 

  103. Matucci-Cerinic M, Denton CP, Furst DE, Mayes MD, Hsu VM, Carpentier P et al (2011) Bosentan treatment of digital ulcers related to systemic sclerosis: results from the RAPIDS-2 randomised, double-blind, placebo-controlled trial. Ann Rheum Dis 70:32–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Korn JH, Mayes M, Matucci Cerinic M, Rainisio M, Pope J, Hachulla E et al (2004) Digital ulcers in systemic sclerosis: prevention by treatment with bosentan, an oral endothelin receptor antagonist. Arthritis Rheum 50:3985–3993

    Article  CAS  PubMed  Google Scholar 

  105. Ichimura Y, Asano Y, Hatano M, Tamaki Z, Takekoshi T, Kogure A et al (2011) Significant attenuation of macrovascular involvement by bosentan in a patient with diffuse cutaneous systemic sclerosis with multiple digital ulcers and gangrene. Mod Rheumatol 21:548–552

    Article  PubMed  Google Scholar 

  106. Abdelsaid M, Kaczmarek J, Coucha M, Ergul A (2014) Dual endothelin receptor antagonism with bosentan reverses established vascular remodeling and dysfunctional angiogenesis in diabetic rats: relevance to glycemic control. Life Sci 118:268–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dréau D, Karaa A, Culberson C, Wyan H, McKillop IH, Clemens MG (2006) Bosentan inhibits tumor vascularization and bone metastasis in an immunocompetent skin-fold chamber model of breast carcinoma cell metastasis. Clin Exp Metastasis 23:41–53

    Article  PubMed  CAS  Google Scholar 

  108. Guiducci S, Bellando Randone S, Bruni C, Carnesecchi G, Maresta A, Iannone F et al (2012) Bosentan fosters microvascular de-remodelling in systemic sclerosis. Clin Rheumatol 31:1723–1725

    Article  CAS  PubMed  Google Scholar 

  109. Cutolo M, Zampogna G, Vremis L, Smith V, Pizzorni C, Sulli A (2013) Longterm effects of endothelin receptor antagonism on microvascular damage evaluated by nailfold capillaroscopic analysis in systemic sclerosis. J Rheumatol 40:40–45

    Article  CAS  PubMed  Google Scholar 

  110. Akamata K, Asano Y, Yamashita T, Noda S, Taniguchi T, Takahashi T et al (2015) Endothelin receptor blockade ameliorates vascular fragility in endothelial cell-specific Fli1 knockout mice by increasing Fli1 DNA-binding ability. Arthr Rheumatol. doi:10.1002/art.39062

    Google Scholar 

  111. Asano Y, Trojanowska M (2009) Phosphorylation of Fli1 at threonine 312 by protein kinase C δ promotes its interaction with p300/CREB-binding protein-associated factor and subsequent acetylation in response to transforming growth factor β. Mol Cell Biol 29:1882–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Asano Y, Czuwara J, Trojanowska M (2007) Transforming growth factor-β regulates DNA binding activity of transcription factor Fli1 by p300/CREB-binding protein-associated factor-dependent acetylation. J Biol Chem 282:34672–34683

    Article  CAS  PubMed  Google Scholar 

  113. Kubo M, Czuwara-Ladykowska J, Moussa O, Markiewicz M, Smith E, Silver RM et al (2003) Persistent down-regulation of Fli1, a suppressor of collagen transcription, in fibrotic scleroderma skin. Am J Pathol 163:571–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jordan S, Distler JH, Maurer B, Huscher D, van Laar JM, Allanore Y et al (2014) Effects and safety of rituximab in systemic sclerosis: an analysis from the European Scleroderma Trial and Research (EUSTAR) group. Ann Rheum Dis. doi:10.1136/annrheumdis-2013-204522

    PubMed Central  Google Scholar 

  115. Sumida H, Asano Y, Tamaki Z, Aozasa N, Taniguchi T, Takahashi T et al (2014) Successful experience of rituximab therapy for systemic sclerosis-associated interstitial lung disease with concomitant systemic lupus erythematosus. J Dermatol 41:418–420

    Article  CAS  PubMed  Google Scholar 

  116. Khor CG, Chen XL, Lin TS, Lu CH, Hsieh SC (2014) Rituximab for refractory digital infarcts and ulcers in systemic sclerosis. Clin Rheumatol 33:1019–1020

    Article  PubMed  Google Scholar 

  117. Daoussis D, Antonopoulos I, Liossis SN, Yiannopoulos G, Andonopoulos AP (2012) Treatment of systemic sclerosis-associated calcinosis: a case report of rituximab-induced regression of CREST-related calcinosis and review of the literature. Semin Arthritis Rheum 41:822–829

    Article  PubMed  Google Scholar 

  118. Maslyanskiy AL, Lapin SV, Kolesova EP, Penin IN, Cheshuina MD, Feist E et al (2014) Effects of rituximab therapy on elastic properties of vascular wall in patients with progressive systemic sclerosis. Clin Exp Rheumatol 32(6 Suppl 86):S-228

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihide Asano.

Additional information

This article is a contribution to the Special Issue on Immunopathology of Systemic Sclerosis - Guest Editors: Jacob M. van Laar and John Varga

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asano, Y., Sato, S. Vasculopathy in scleroderma. Semin Immunopathol 37, 489–500 (2015). https://doi.org/10.1007/s00281-015-0505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0505-5

Keywords

Navigation