Skip to main content
Log in

Association of TNFAIP3 polymorphism with rheumatic heart disease in Chinese Han population

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

In a pair-matched case–control study (239 versus 478) conducted in Chinese Han population, we investigated the association between tumor necrosis factor-α-induced protein 3 (TNFAIP3) gene, tumor necrosis factor receptor-associated factor 1 (TRAF1) gene, complement component 5 (C5) gene, and rheumatic heart disease (RHD). We observed no association with RHD for the five tagging single nucleotide polymorphisms (tSNP) in the C5 gene, the three tSNPs in the TNFAIP3 gene, or the two tSNPs in the TRAF1 gene. However, we determined that the tSNP, rs582757, located at intron_5 of the TNFAIP3 gene, associated with RHD in Chinese Han population. Both the distribution of genotype and allele frequencies differed significantly between case and control subjects (p = 0.001 and p = 0.0004, respectively). The minor C allele reduced the risk of RHD with a per-allele odds ratio of 0.57 (0.42–0.78) for the additive model in univariate analysis (p = 0.000). Under a dominant model, CC/CT carriers had a 0.54-fold reduced risk of RHD (95% confidence interval 0.38–0.75, p = 0.000) than TT carriers. Therefore, we report a new genetic variant (rs582757) in the TNFAIP3 gene that associated with the prevalence of RHD in Chinese Han population. Further genetic and functional studies are required to identify the etiological variants in linkage disequilibrium with this polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • AHA Medical/Scientific Statement (Updated 1992) (1993) Jones criteria. Circulation 87:302–307

    Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Bell PA, Chaturvedi S, Gelfand CA, Huang CY, Kochersperger M, Kopla R (2002) SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. Biotechniques 74(Suppl: 70–72):76–77

    Google Scholar 

  • Boonyasrisawat W, Eberle D, Bacci S, Zhang YY, Nolan D, Gervino EV et al (2007) Tag polymorphisms at the A20 (TNFAIP3) locus are associated with lower gene expression and increased risk of coronary artery disease in type 2 diabetes. Diabetes 56:499–505

    Article  CAS  PubMed  Google Scholar 

  • Carapetis JR, Curie BJ, Good MF (1996) Towards understanding the pathogenesis of rheumatic fever. Scan J Rheumatol 25:127–131

    Article  CAS  Google Scholar 

  • Chang M, Rowland CM, Garcia VE, Schrodi SJ, Catanese JJ, van der Helm-van Mil AH et al (2008) A large-scale rheumatoid arthritis genetic study identifies association at chromosome 9q33.2. PLoS Genet 4:e1000107

    Article  PubMed  Google Scholar 

  • Chou HT, Chen CH, Tsai CH, Tsai FJ (2004) Association between transforming growth factor-beta1 gene C-509 T and T869C polymorphisms and rheumatic heart disease. Am Heart J 148:181–186

    Article  CAS  PubMed  Google Scholar 

  • Dieguez-Gonzalez R, Calaza M, Perez-Pampin E, Balsa A, Blanco FJ, Cañete JD et al (2009) Analysis of TNFAIP3, a feedback inhibitor of nuclear factor-kappaB and the neighbor intergenic 6q23 region in rheumatoid arthritis susceptibility. Arthritis Res Ther 11:R42 [Epub ahead of print]

    Article  PubMed  Google Scholar 

  • Goodnow CC (2001) Pathways for self-tolerance and the treatment of autoimmune diseases. Lancet 357:2115–2121

    Article  CAS  PubMed  Google Scholar 

  • Graham RR, Cotsapas C, Davies L, Hackett R, Lessard CJ, Leon JM et al (2008) Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet 40:1059–1061

    Article  CAS  PubMed  Google Scholar 

  • Greisenegger S, Zehetmayer S, Bauer P, Endler G, Ferrari J, Lang W et al (2009) Polymorphisms in inflammatory genes and the risk of ischemic stroke and transient ischemic attack: results of a multilocus genotyping assay. Clin Chem 55:134–138

    Article  CAS  PubMed  Google Scholar 

  • Gressner O, Meier U, Hillebrandt S, Wasmuth HE, Köhl J, Sauerbruch T et al (2007) Gc-globulin concentrations and C5 haplotype-tagging polymorphisms contribute to variations in serum activity of complement factor C5. Clin Biochem 40:771–775

    Article  CAS  PubMed  Google Scholar 

  • Guilherme L, Fae K, Oshiro SE, Kalil J (2005) Molecular pathogenesis of rheumatic fever and rheumatic heart disease. Expert Rev Mol Med 7:1–15

    Article  PubMed  Google Scholar 

  • Hillebrandt S, Wasmuth HE, Weiskirchen R, Hellerbrand C, Keppeler H, Werth A et al (2005) Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nature Genet 37:835–843

    Article  CAS  PubMed  Google Scholar 

  • Höpken UE, Lu B, Gerard NP, Gerard C (1996) The C5a chemoattractant receptor mediates mucosal defence to infection. Nature 383:86–89

    Article  PubMed  Google Scholar 

  • Kaplan MH, Meyeserian M (1962) An immunological cross-reaction between group A streptococcal cells and human heart tissue. Lancet 1:706

    Article  CAS  PubMed  Google Scholar 

  • Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP et al (2000) Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289:2350–2354

    Article  CAS  PubMed  Google Scholar 

  • Messias Reason IJ, Schafranski MD, Jensenius JC, Steffensen R (2006) The association between mannose-binding lectin gene polymorphism and rheumatic heart disease. Hum Immunol 67:991–998

    Article  CAS  PubMed  Google Scholar 

  • Musone SL, Taylor KE, Lu TT, Nititham J, Ferreira RC, Ortmann W et al (2008) Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet 40:1062–1064

    Article  CAS  PubMed  Google Scholar 

  • Opipari AW Jr, Boguski MS, Dixit VM (1990) The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem 265:14705–14708

    CAS  PubMed  Google Scholar 

  • Plenge RM, Cotsapas C, Davies L, Price AL, de Bakker PI, Maller J et al (2007a) Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 39:1477–1482

    Article  CAS  PubMed  Google Scholar 

  • Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B et al (2007b) TRAF1-C5 as a risk locus for rheumatoid arthritis—a genome wide study. N Engl J Med 357:1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Roberts S, Kosanke S, Dunn TS, Jankelow D, Duran CMG, Cunningham MW (2001) Pathogenic mechanism in rheumatic carditis: focus on valvular endothelium. J Infect Dis 183:507–511

    Article  CAS  PubMed  Google Scholar 

  • Sabbagh L, Srokowski CC, Pulle G, Snell LM, Sedgmen BJ, Liu Y et al (2006) A critical role for TNF receptor-associated factor 1 and Bim down-regulation in CD8 memory T cell survival. Proc Natl Acad Sci USA 103:18703–18708

    Article  CAS  PubMed  Google Scholar 

  • Schafranski MD, Stier A, Nisihara R, Messias-Reason IJ (2004) Significantly increased levels of mannose-binding lectin (MBL) in rheumatic heart disease: a beneficial role for MBL deficiency. Clin Exp Immunol 138:521–525

    Article  CAS  PubMed  Google Scholar 

  • Schafranski MD, Pereira Ferrari L, Scherner D, Torres R, Jensenius JC, de Messias-Reason IJ (2008) High-producing MBL2 genotypes increase the risk of acute and chronic carditis in patients with history of rheumatic fever. Mol Immunol 45:3827–3831

    Article  CAS  PubMed  Google Scholar 

  • Stanevicha V, Eglite J, Sochnevs A, Gardovska D, Zavadska D, Shantere R (2003) HLA class II associations with rheumatic heart disease among clinically homogenous patients in children in Latvia. Arthritis Res Ther 5:340–346

    Article  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  CAS  PubMed  Google Scholar 

  • Thomson W, Barton A, Ke X, Eyre S, Hinks A, Bowes J et al (2007) Rheumatoid arthritis association at 6q23. Nat Genet 39:1431–1433

    Article  CAS  PubMed  Google Scholar 

  • Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T et al (2003) An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet 35:341–348

    Article  CAS  PubMed  Google Scholar 

  • Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Science Fund for Distinguished Young Scholars (30625016), a grant from the Major Program of National Natural Science Foundation (30890034) and a grant from Shanghai Municipal Health Bureau Fund for Distinguished Young Scholars (2006Y22).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-yun Xu or Xiao-feng Wang.

Additional information

Rong Hua and Ji-bin Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, R., Xu, Jb., Wang, Jc. et al. Association of TNFAIP3 polymorphism with rheumatic heart disease in Chinese Han population. Immunogenetics 61, 739–744 (2009). https://doi.org/10.1007/s00251-009-0405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-009-0405-8

Keywords

Navigation