Skip to main content

Advertisement

Log in

Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

Quantifying the determinants of bone strength is essential to understanding if or how the structure will fail under load. Determining failure requires knowledge of material and geometric properties. However, characterizing the relative contributions of geometric parameters of bone to overall bone strength has been difficult to date because of limitations in imaging technology. Peripheral quantitative computed tomography (pQCT) uses digital images to derive estimates of bone strength in the peripheral skeleton and is a relatively safe technique to differentiate cortical from trabecular bone and assess bone geometry and density. However, in a compromised osteoporotic bone, thin cortices and low scan resolution can limit accurate analysis.

Methods

Therefore, in this two-part investigation we scanned ten pairs (n=20) of fresh-frozen radial specimens [female, mean (SD) age 79(6) years] using pQCT (XCT 2000) at the 4 and 30% sites of the distal radius. We investigated the accuracy of four different acquisition resolutions (200, 300, 400, 500 μm) and several analysis modes and thresholds. We evaluated (1) the accuracy of the Norland/Stratec XCT 2000 pQCT in assessing low-density bones by comparing pQCT outcomes to ashing and histomorphometry and (2) the association of geometric parameters by pQCT and areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) to failure load at the distal radius.

Results

Using histomorphometry and ashing as reference standards, we found that pQCT scans varied systematically and underestimated or overestimated total area and mineral content at the radial midshaft depending on the analysis algorithm and selected threshold. Overall, most pQCT analysis modes were accurate. In the mechanical testing studies, bone mineral content and cortical bone content at the midshaft were strongly associated with failure load. The pQCT parameters that best accounted for failure load were total content at the 4% site and cortical thickness at the 30% site and they accounted for up to 81% of the variance. The best DXA predictor of failure load was total density at the distal third site and it explained 75% of the variance.

Conclusions

In summary, analysis mode, resolution and thresholding affected pQCT outputs at the radial midshaft. This study extends our understanding of pQCT analysis and provides important data regarding determinants of bone strength at the distal radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Genant HK, Engelke K, Fuerst T, Gluer CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S, Mathur A, Takada M (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 6:707–730

    Google Scholar 

  2. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone density predict fractures. Br Med J 312:1254–1259

    CAS  Google Scholar 

  3. Myers ER, Hecker AT, Rooks DS, Hipp JA, Hayes WC (1993) Geometric variables from DXA of the radius predict forearm fracture load in vitro. Calcif Tissue Int 52(3):199–204

    Article  PubMed  CAS  Google Scholar 

  4. Lochmuller EM, Lill CA, Kuhn V, Schneider E, Eckstein F (2002) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17(9):1629–1638

    Article  PubMed  Google Scholar 

  5. Augat P, Iida H, Jiang Y, Diao E, Genant HK (1998) Distal radius fractures: mechanisms of injury and strength prediction by bone mineral assessment. J Orthop Res 16(5):629–635

    Article  PubMed  CAS  Google Scholar 

  6. Augat P, Reeb H, Claes LE (1996) Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res 11(9):1356–1363

    PubMed  CAS  Google Scholar 

  7. Bonel HM, Lochmuller EM, Well H, Kuhn V, Hudelmaier M, Reiser M, Eckstein F (2004) Multislice computed tomography of the distal radius metaphysis: relationship of cortical bone structure with gender, age, osteoporotic status, and mechanical competence. J Clin Densitom 7(2):169–182

    Article  PubMed  Google Scholar 

  8. Eckstein F, Kuhn V, Lochmuller EM (2004) Strength prediction of the distal radius by bone densitometry-evaluation using biomechanical tests. Ann Biomed Eng 32(3):487–503

    Article  PubMed  Google Scholar 

  9. Hudelmaier M, Kuhn V, Lochmuller EM, Well H, Priemel M, Link TM, Eckstein F (2004) Can geometry-based parameters from pQCT and material parameters from quantitative ultrasound (QUS) improve the prediction of radial bone strength over that by bone mass (DXA)? Osteoporos Int 15(5):375–381

    Article  PubMed  CAS  Google Scholar 

  10. Siu WS, Qin L, Leung KS (2003) pQCT bone strength index may serve as a better predictor than bone mineral density for long bone breaking strength. J Bone Miner Metab 21(5):316–322

    Article  PubMed  Google Scholar 

  11. Wigderowitz CA, Paterson CR, Dashti H, McGurty D, Rowley DI (2000) Prediction of bone strength from cancellous structure of the distal radius: can we improve on DXA? Osteoporos Int 11(10):840–846

    Article  PubMed  CAS  Google Scholar 

  12. Wu C, Hans D, He Y, Fan B, Njeh CF, Augat P, Richards J, Genant HK (2000) Prediction of bone strength of distal forearm using radius bone mineral density and phalangeal speed of sound. Bone 26(5):529–533

    Article  PubMed  CAS  Google Scholar 

  13. Augat P, Gordon CL, Lang TF, Iida H, Genant HK (1998) Accuracy of cortical and trabecular bone measurements with peripheral quantitative computed tomography (pQCT). Phys Med Biol 43:2873–2883

    Article  PubMed  CAS  Google Scholar 

  14. Takada M, Engelke K, Hagiwara S, Grampp S, Genant HK (1996) Accuracy and precision study in vitro for peripheral quantitative computed tomography. Osteoporos Int 6(3):207–212

    Article  PubMed  CAS  Google Scholar 

  15. Louis O, Boulpaep J, Willnecker J, Van Den Winkel P, Osteaux M (1995) Cortical mineral content of the radius assessed by peripheral QCT predicts compressive strength on biomechanical testing. Bone 16(3):375–379

    Article  PubMed  CAS  Google Scholar 

  16. Louis O, Soykens S, Willnecker J, Van Den Winkel P, Osteaux M (1996) Cortical and total bone mineral content of the radius: accuracy of peripheral computed tomography. Bone 18(5):467–472

    Article  PubMed  CAS  Google Scholar 

  17. Louis O, Willnecker J, Soykens S, Van den Winkel P, Osteaux M (1995) Cortical thickness assessed by peripheral quantitative computed tomography: accuracy evaluated on radius specimens. Osteoporos Int 5(6):446–449

    Article  PubMed  CAS  Google Scholar 

  18. Hangartner TN, Gilsanz V (1996) Evaluation of cortical bone by computed tomography. J Bone Miner Res 11(10):1518–1525

    Article  PubMed  CAS  Google Scholar 

  19. Binkley TL, Specker BL (2000) pQCT measurement of bone parameters in young children: validation of technique. J Clin Densitom 3(1):9–14

    Article  PubMed  CAS  Google Scholar 

  20. Gatti D, Rossini M, Zamberlan N, Braga V, Fracassi E, Adami S (1996) Effect of aging on trabecular and compact bone components of proximal and ultradistal radius. Osteoporos Int 6(5):355–360

    Article  PubMed  CAS  Google Scholar 

  21. Kang Q, An YH, Friedman RJ (1997) Effects of multiple freezing-thawing cycles on ultimate indentation load and stiffness of bovine cancellous bone. Am J Vet Res 58(10):1171–1173

    PubMed  CAS  Google Scholar 

  22. Stratec XCT (2000) Manual; Software Version 5.5,Pforzheim, Germany.http://www.stratec-med.com/literatur/manuals/man3k55e.pdf.

  23. Spoor CF, Zonneveld FW, Macho GA (1993) Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. Am J Phys Anthropol 91(4):469–484

    Article  PubMed  CAS  Google Scholar 

  24. Hologic (1996) model QDR-4500 user’s guide, Waltham, MA

  25. Muller ME, Webber CE, Bouxsein ML (2003) Predicting the failure load of the distal radius. Osteoporos Int 14(4):345–352

    Article  PubMed  Google Scholar 

  26. Mall G, Hubig M, Buttner A, Kuznik J, Penning R, Graw M (2001) Sex determination and estimation of stature from the long bones of the arm. Forensic Sci Int 117(1-2):23–30

    Article  PubMed  CAS  Google Scholar 

  27. Hotchkiss CE (1999) Use of peripheral quantitative computed tomography for densitometry of the femoral neck and spine in cynomolgus monkeys (Macaca fascicularis). Bone 24(2):101–107

    Article  PubMed  CAS  Google Scholar 

  28. Ballester M, Zisserman A, Brady M (2002) Estimation of partial volume effect. Medical 6:385–405

    Google Scholar 

  29. Hwang SN, Wehrli FW (2002) Subvoxel processing: a method for reducing partial volume blurring with application to in vivo MR images of trabecular bone. Magn Reson Med 47(5):948–957

    Article  PubMed  Google Scholar 

  30. Veitch SW, Findlay SC, Ingle BM, Ibbotson CJ, Barrington A, Hamer AJ, Eastell R (2004) Accuracy and precision of peripheral quantitative computed tomography measurements at the tibial metaphysis. J Clin Densitom 7(2):209–217

    Article  PubMed  Google Scholar 

  31. Spadaro JA, Werner FW, Brenner RA, Fortino MD, Fay LA, Edwards WT (1994) Cortical and trabecular bone contribute to the strength of the osteopenic distal radius. J Orthop Res 12:211–218

    Article  PubMed  CAS  Google Scholar 

  32. Courtney AC, Wachtel EF, Myers ER, Hayes WC (1994) Effects of loading rate on strength of the proximal femur. Calcif Tissue Int 55(1):53–58

    Article  PubMed  CAS  Google Scholar 

  33. Rockoff S, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3(2):167–175

    Google Scholar 

  34. Lochmuller EM, Muller R, Kuhn V, Lill CA, Eckstein F (2003) Can novel clinical densitometric techniques replace or improve DXA in predicting bone strength in osteoporosis at the hip and other skeletal sites? J Bone Miner Res 18(5):906–912

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Canadian Institutes of Health Research, Michael Smith Foundation for Health Research and the British Columbia Medical Services Foundation. We thank Dr. Neil White, Dr. Kathy Keiver, Dr. Gilles Galzi, Ms. Cecelia Tang, Ms. Jen Davis and Mr. Jesse Chen for their helpful assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Ashe.

Appendix

Appendix

There are several steps involved in analyzing a pQCT scan. The first step is to define the region of interest (ROI) after scan acquisition. Whatever is contained within the ROI will be included for analysis. Once the ROI is defined, the analysis parameters must be determined. This includes setting the thresholds for separating trabecular from cortical and “subcortical” bone. The XCT 2000 software version 5.50 provides the operator the choice of many combinations of analysis modes. CALCBD refers to the analysis of cancellous or trabecular bone and total bone, and CORTBD to the analysis of cortical bone. Tables 4 and 5 provide an overview of the modes available with the XCT 2000. Within CALCBD there are two parts: Contour Mode and Peel Mode. The software provides three Contour Mode and eight Peel Mode algorithms. Contour Mode (edge detection) separates bone from the surrounding soft tissue. Peel Mode separates trabecular bone from cortical/subcortical bone and CORTBD determines the cortical bone parameters.

Table 4 Overview of XCT software version 5.50 analysis modes
Table 5 XCT software version 5.50 modes and thresholds used in the investigation at the 30% site

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashe, M.C., Khan, K.M., Kontulainen, S.A. et al. Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Osteoporos Int 17, 1241–1251 (2006). https://doi.org/10.1007/s00198-006-0110-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-006-0110-5

Keywords

Navigation