Skip to main content

Advertisement

Log in

Bone mineral density predicts osteoporotic fractures in elderly men: the MINOS study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Osteoporosis in men is becoming a public health problem in developed countries. Fracture incidence increases with age, and the number of fractures increases because of the ageing of the population. We assessed the predictive value of bone mineral density (BMD) for osteoporotic fractures evaluated prospectively in a large cohort of elderly men and assessed the sensitivity of the T-score =−2 to detect men who will sustain a fracture. Fracture incidence was evaluated for 90 months in 759 men from the MINOS cohort aged 50 and over at baseline. In 74 men, 77 incident vertebral and peripheral fractures occurred. BMD was measured at baseline at the lumbar spine, hip, whole body and distal forearm. The incidence of osteoporotic fractures increased with age and with decreasing body weight. In men with low BMD (T-score <−2), fracture incidence varied from 2.26 to 3.07 fractures per 100 person-years and was 2.1 to 3.6 times higher than in men with normal BMD. After adjustment for age, body weight and height, baseline BMD was 3.7 to 7.9% ( P <0.05–0.0001) lower at all the sites of measurement in men who sustained a fracture. After adjustment for age, weight and prevalent fractures, BMD was predictive of osteoporotic fractures at all the sites. Odds ratios varied from 1.28 to 1.89 per 1 SD decrease in BMD ( P <0.05–0.0001). The predictive accuracy of BMD for fractures (area under the curve of the receiving operator characteristics adjusted for age, weight and prevalent fractures) varied from 0.643 to 0.712 according to the skeletal site and was higher for the whole body than for other sites. Thus, BMD itself has a limited value for determining men at an increased risk for fracture. The percentage of incident fractures occurring in men with low BMD (T-score <−2) ranged from 13.7% at the trochanter to 44.6% at the ultradistal radius. Conversely, 27 to 45% of incident fractures occurred in men with mildly decreased BMD (T-score between −1 and −2). In conclusion, BMD predicts osteoporotic fractures in men independently of age, body weight and prevalent fractures. However, the sensitivity of BMD to detect men at high risk of fracture is low. More studies on the predictors of fractures in men, such as bone architecture, morphology, biochemical markers of bone turnover and hormonal levels, are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Klift M van der, de Laet CEDH, McCloskey EV, Hofman A, Pols HAP (2002) The incidence of vertebral fractures in men and women: the Rotterdam study. J Bone Miner Res 17:1051–1056

    PubMed  Google Scholar 

  2. Löfman O, Berglund K, Larsson L, Toss G (2002) Changes in hip fracture epidemiology: redistribution between ages, genders and fracture types. Osteoporos Int 13:18–25.

    Google Scholar 

  3. Lofthus CM, Osnes EK, Falch JA, Kaastad TS, Kristiansen IS, Nordsletten L, Stensvold I, Meyer HE (2001) Epidemiology of hip fractures in Oslo, Norway. Bone 29:413–418

    Article  PubMed  Google Scholar 

  4. Seeley DG, Browner WS, Nevitt MC, Genant HK, Scott JC, Cummings SR (1991) Which fractures are associated with low appendicular bone mass in elderly women? Ann Intern Med 115:837–842

    PubMed  Google Scholar 

  5. Nevitt MC, Johnell O, Black DM, Ensrud K, Genant HK Cummings SR (1994) Bone mineral density predicts non-spine fractures in very elderly women. Osteoporos Int 4:325–331

    Article  PubMed  Google Scholar 

  6. Klift M van der, de Laet CEDH, McCloskey EV, Johnell O, Kanis JA, Hofman A, Pols HAP (2004) Risk factors for incident vertebral fractures in men and women: the Rotterdam study. J Bone Miner Res 19:1172–1180

    PubMed  Google Scholar 

  7. Nguyen TV, Center JR, Sambrook PN, Eisman JA (2001) Risk factors for proximal humerus, forearm, and wrist fractures in elderly men and women. Am J Epidemiol 153:587–595

    Article  PubMed  Google Scholar 

  8. Schott AM, Cormier C, Hans D, Favier F, Hausherr E, Dargent-Molina P, Delmas PD, Rinot C, Sebert JL, Bréart G, Meunier PJ (1998) How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS prospective study. Osteoporos Int 8:247–254

    Article  PubMed  Google Scholar 

  9. Laet CEDH de, van Hout BA, Burger H, Weel AEAM, Hofman A, Pols HAP (1998) Hip fracture prediction in elderly men and women: validation in the Rotterdam study. J Bone Miner Res 13:1587–1593

    PubMed  Google Scholar 

  10. Lu Y, Genant HK, Shepherd J, Zhao S, Mathur A, Fuerst TP, Cummings SR (2001) Classification of osteoporosis based on bone mineral densities. J Bone Miner Res 16:901–910

    PubMed  Google Scholar 

  11. Cody DD, Divine GW, Hahigian K, Kleerekoper M (2000) Bone density distribution and gender dominate femoral fracture risk predictors. Skeletal Radiol 29:151–161

    Article  PubMed  Google Scholar 

  12. Cheng S, Suominen H, Era P, Heikkinen E (1994) Bone density of the calcaneus and fractures in 75- and 80-years-old men and women. Osteoporos Int 4:48–54

    PubMed  Google Scholar 

  13. Ross PD, Lombardi A, Freedholm D (1999) The assessment of bone mass in men. In: Osteoporosis in men. In: Orwoll ES (ed) The effects of gender on skeletal health. Academic Press, London, pp 505–525

  14. Nguyen TV, Eisman JA, Kelly PJ, Sambrook PN (1996) Risk factors for osteoporotic fractures in elderly men. Am J Epidemiol 144:255–263

    PubMed  Google Scholar 

  15. O’Neill TW and the EPOS group (2002) The relationship between bone density and incident vertebral fracture in men and women. J Bone Miner Res 17:2214–2221

    PubMed  Google Scholar 

  16. Stegman MR, Heaney RP, Recker RR (1995) Comparison of speed of sound ultrasound with single photon absorptiometry for determining fracture odds ratios. J Bone Miner Res 10:346–352

    PubMed  Google Scholar 

  17. Melton LJ III, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL (1998) Bone density and fracture risk in men. J Bone Miner Res 13:1915–1923

    PubMed  Google Scholar 

  18. Fujiwara S, Kasagi F, Masunari N, Naito K, Suzuki G, Fukunaga M (2003) Fracture prediction from bone mineral density in Japanese men and women. J Bone Miner Res 18:1547–1553

    PubMed  Google Scholar 

  19. Laet CEDH de, van Hout BA, Burger H, Hofman A, Pols HAP (1997) Bone density and risk of hip fracture in men and women: cross-sectional analysis. BMJ 315:221–225

    PubMed  Google Scholar 

  20. Center JR, Nguyen TV, Pocock NA, Eisman JA (2004) Volumetric bone density at the femoral neck as a common measure of hip fracture risk for men and women. J Clin Endocrinol Metab 89:2776–2782

    Article  PubMed  Google Scholar 

  21. Gärdsell P, Johnell O, Nilsson BE (1990) The predictive value of forearm mineral content measurements in men. Bone 11:229–232

    Article  PubMed  Google Scholar 

  22. Ray NF, Chan JK, Thamer M, Melton LJ III (1997) Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res 12:24–35

    PubMed  Google Scholar 

  23. Randell A, Sambrook PN, Nguyen TV, Lapsley H, Jones G, Kelly PJ, Eisman JA (1995) Direct clinical and welfare costs of osteoporosic fractures in elderly men and women. Osteoporos Int 5:427–432

    Article  PubMed  Google Scholar 

  24. Fransen M, Woodward M, Norton R, Robinson E, Butler M, Campbell AJ (2002) Excess mortality or institutionalisation after hip fracture: men are at greater risk than women. JAGS 50:685–690

    Article  Google Scholar 

  25. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353:878–882

    Article  PubMed  Google Scholar 

  26. Schürch MA, Rizzoli R, Mermillod B, Vasey H, Michel JP, Bonjour JP (1996) A prospective study on socioeconomic aspects of fracture of the proximal femur. J Bone Miner Res 11:1935–1942

    PubMed  Google Scholar 

  27. Kannus P, Niemi S, Parkkari J, Palvanen M, Vuori I, Järvinen M (1999) Hip fractures in Finland between 1970 and 1997 and predictions for the future. Lancet 353:802–805

    Article  PubMed  Google Scholar 

  28. Oden A, Dawson A, dere W, Johnell O, Jonsson B, Kanis JA (1998) Lifetime risk of hip fractures is underestimated. Osteoporos Int 8:599–603

    Article  PubMed  Google Scholar 

  29. Kannus P, Palvanen M, Niemi S, Parkkari J, Järvinen M, Vuori I (1997) Increasing number and incidence of osteoporotic fractures of the proximal humerus in elderly people. Br Med J 313:1051–1052

    Google Scholar 

  30. Boereboom FTJ, Raymakers JA, de Groot RRM, Duursma SA (1992) Epidemiology of hip fractures in the Netherlands: women compared with men. Osteoporos Int 2:279–284

    Article  PubMed  Google Scholar 

  31. Felsenberg D and the EPOS group (2002) Incidence of vertebral fracture in Europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 17:716–724

    PubMed  Google Scholar 

  32. Baron JA, Karagas M, Barrett J, Kniffin W, Malenka D, Mayor M, Kellet RB (1996) Basic epidemiology of fractures of the upper and lower limb among Americans over 65 years of age. Epidemiology 7:612–618

    PubMed  Google Scholar 

  33. Schuit SCE, van der Klift M, Weel AEAM, de Laet CEDH, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JPTM, Pols HAP (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

    Article  PubMed  Google Scholar 

  34. Looker AC, Orwoll ES, Johnston CC Jr, Lindsay RL, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP (1997) Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res 12:1761–1768

    PubMed  Google Scholar 

  35. Tenenhouse A, Joseph L, Kreiger N, Poliquin S, Murray TM, Blondeau L, Berger C, Hanley DA, Prior JC (2000) Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian Multicentre Osteoporosis study (CaMos). Osteoporos Int 11:897–904

    Article  PubMed  Google Scholar 

  36. Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Delmas PD (2005) Identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res (in print)

    Google Scholar 

  37. Szulc P, Marchand F, Duboeuf F, Delmas PD (2000) Cross-sectional assessment of age-related bone loss in men. Bone 26:123–129

    Article  PubMed  Google Scholar 

  38. Szulc P, Munoz F, Marchand F, Delmas PD (2001) Semiquantitative evaluation of prevalent vertebral deformities in men and their relationship with osteoporosis: the MINOS study. Osteoporos Int 12:302–310

    Article  PubMed  Google Scholar 

  39. McCloskey EV, Spector TD, Eyres KS, Kern ED, O’Rourke N, Vasikaran S, Kanis JA (1993) The assessment of vertebral deformity : a method for use in population studies and clinical trials. Osteoporosis Int 3:138–147

    Article  Google Scholar 

  40. Hans D, Dubeouf F, Schott AM, Horn S, Avioli LV, Drezner MK, Meunier PJ (1997) Effects of a new positioner on the precision of hip bone mineral density measurements. J Bone Miner Res 12:1289–1294

    PubMed  Google Scholar 

  41. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the area under two or more correlated receiver operating characteristic curves: a non parametric approach. Biometrics 44:837–845

    PubMed  Google Scholar 

  42. Sanders KM, Seeman E, Ugoni AM, Pasco JA, Martin TJ, Skoric B, Nicholson GC, Kotowicz MA (1999) Age- and gender-specific rate of fractures in Australia: a population-based study. Osteoporos Int 10:240–247

    Article  PubMed  Google Scholar 

  43. O’Neill TW, Cooper C, Finn JD, Lunt M, Purdie D, Reid DM, Rowe R, Woolf AD, Wallace WA (2001) Incidence of distal forearm fracture in British mean and women. Osteoporos Int 12:555–558

    Article  PubMed  Google Scholar 

  44. Haentjens P, Johnell O, Kanis JA, Bouillon R, Cooper C, Lamraski G, Vanderschueren D, Kaufman JM, Boonen S (2004) Evidence from data searches and life-table analyses for gender-related differences in absolute risk of hip fracture after Colles’ or spine fracture: Colles’ fracture as an early and sensitive markers of skeletal fragility in white men. J Bone Miner Res 19:1933–1944

    PubMed  Google Scholar 

  45. Lee SH, Dargent-Molina P, Bréart G (2002) Risk factors for fractures of the proximal humers: results from the EPIDOS prospective study. J Bone Miner Res 17:817–825

    PubMed  Google Scholar 

  46. Nguyen T, Sambrook P, Kelly P, Jones G, Lord S, Freund J, Eisman J (1993) Prediction of osteoporotic fractures by postural instability and bone density. BMJ 307:1111–1115

    PubMed  Google Scholar 

  47. Levy P, Levy E, Audran M, Cohen-Solal M, Fardellone P, Le Parc JM (2002) The cost of osteoporosis in men: the French situation. Bone 30:631–636

    Article  PubMed  Google Scholar 

  48. Cawthon PM, Cummings SR, Chan BKS, Cauley JA, Ensrud KE, Bauer DC, Fink HA, Black DM, Orwoll ES (2004) Hip and spine BMD and prediction of hip and other fractures in men. First results from the osteoporotic fractures in men (MrOS) study. J Bone Miner Res 19 [Suppl 1 S4]:1009

  49. Meier C, Nguyen TV, Center JR, Seibel MJ, Eisman JA (2005) Bone resorption and osteoporotic fractures in elderly men: the Dubbo Osteoporosis Epidemiology Study. J Bone Miner Res 20:579–587

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a contract from INSERM/Merck Sharp Dohme Chibret.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Szulc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szulc, P., Munoz, F., Duboeuf, F. et al. Bone mineral density predicts osteoporotic fractures in elderly men: the MINOS study. Osteoporos Int 16, 1184–1192 (2005). https://doi.org/10.1007/s00198-005-1970-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-005-1970-9

Keywords

Navigation