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INTRODUCTION
The science of decision analysis can help patients and physi-
cians choose the best treatment when outcomes are uncer-
tain. We say that randomness exists whenever intrinsically
unobservable factors influence outcomes. Consider a simple
coin flip. In comparison to the complex biomedical
processes of disease and treatment, the physics of flipping
coins is relatively straightforward. Nevertheless, whether
the coin lands heads up depends on the exact physical state
of the coin and the environment, which is unknowable.
Imperfect foresight of random outcomes is referred to as
“first-order” uncertainty (see Briggs1 for discussion of types
of uncertainty).

If the coin is fair, half of the flips will turn up heads in the
long run. Using classical statistics, the frequency of long-
run events can be converted into the probability of an event
occurring in a given instance (i.e., the probability of a fair
coin turning up heads is one-half). But what if you don’t
know whether or not the coin is fair? If a bet were to be
placed on heads or tails, which would you choose? If a very
large (nearly infinite) number of coin flips could be
observed prior to placing a bet, and 75% came up heads, it
wouldn’t be a bad idea to bet on heads! This situation would
be similar to choosing between 2 treatments after the
“perfect” head-to-head randomized clinical trial. While indi-
vidual outcomes remain uncertain, at least we have (almost)
perfect knowledge about their probabilities.

It is also (almost) certain that no perfect head-to-head
clinical trial has ever been conducted. Physicians and
patients must make treatment decisions based not only on
imperfect foresight but also on imperfect knowledge. Not
only are the probabilities of treatment success, failure, side
effects, etc. uncertain, but so are the consequences of these
events in terms of costs and outcomes.

In decision analysis, such event probabilities and conse-
quences are referred to collectively as the “parameters” of
the decision model. Knowledge about parameters comes
from real-world controlled trials, observational studies,
expert opinion, etc. Such imperfect investigations will
always leave some statistical margin of error. “Second-
order” uncertainty refers to imperfect knowledge of the true
value of the model parameters.

Decision analyses should reflect how second-order
uncertainty affects the decision-maker’s ability to choose
the optimal treatment. Unfortunately, published decision
analyses often report base-case incremental cost-effective-
ness ratios as if they were known with certainty. While
researchers often use one-way, deterministic sensitivity
analysis to test the model’s robustness to variation of single
parameters, they often do not assess globally the influence

of second-order uncertainty on the decision-maker’s ability
to choose the optimal treatment.

Bayesian Uncertainty Analysis
Measures of second-order uncertainty derived from
Bayesian statistics can help us to “know what we don’t
know” in a decision analysis. In contrast to the classical
statistics approach based on long-run frequencies (the
perfect clinical trial), Bayesian statistics establishes how
more can be learned about an unknown parameter as new
data are observed piece by piece (the real world of clinical
studies). Bayes’ Law is the cornerstone of Bayesian statis-
tics. It relates what we know about a random parameter after
observing new data to what we knew beforehand and the
likelihood of observing the data we actually observed. The
state of knowledge before observing new data is called the
“prior”, the state of knowledge afterwards is called the
“posterior.”

What if nothing was known beforehand about the proba-
bility that a new treatment would be successful? One might
represent such (lack of) knowledge with a uniform proba-
bility distribution ranging from zero to one. For example,
suppose that a case series of 9 individuals under treatment is
observed: 6 successes and 3 failures. Using “conjugate”
analysis (where the posterior distribution is easily calculated
given the prior and the observed data), the posterior distrib-
ution can be calculated using Bayes’ Law. The prior and
posterior distributions are plotted in Figure 1. Note the
posterior distribution has ruled out zero and one (since both
successes and failures were observed). The most likely
success probability is two-thirds = 6/9 (which would be the
classical maximum likelihood estimate). We still do not
know the true probability of success with certainty — it may
still be 0.1 or 0.95 (or any other number other than zero or
one), although 0.66 is more likely to be true given the
current state of knowledge. The level of certainty about an
unknown parameter can be visualized as the “tightness” of
its distribution (Figure 1).

Decision Acceptability
Monte Carlo simulation can help identify how second-order
uncertainty influences the decision-maker. The standard
methods of calculating expected incremental cost and effec-
tiveness from decision trees are used. However, rather than
using the base-case set of parameters, we use a computer to
draw a pseudo-random set of parameters from the proba-
bility distributions reflecting our current state of knowledge
(ideally, Bayesian posterior distributions). The incremental
cost and effectiveness pair resulting from this random para-
meter “draw” can be plotted on the incremental cost-effec-
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tiveness plane (see Briggs, et al3). Given a threshold value
of willingness to pay for a unit outcome improvement (for
example, $50,000 per quality-adjusted life year), we can
plot a line through the origin with that slope. If the point lies
below and to the right of that line (i.e., more effective and/or
less expensive) that would be evidence in favor of the new
treatment. Doing this exercise repeatedly (say, 10,000 times)
would yield a cloud of points in the cost-effectiveness plane
(Figure 2). 

By counting the number of points below the line and
dividing it by the total number of points, we can derive a
measure of the “acceptability” of the decision to the deci-
sion-maker. If, for example, after considering all uncer-
tainty, 90% of the simulations favored the new treatment,
this would be more acceptable to a decision-maker than if it
were “50/50.” Acceptability depends on the threshold value
for cost-effectiveness. Plotting acceptability as a function of
the threshold value yields an “acceptability curve”4.

The Value of Information
Bayesian decision analysis can also explicitly assign value
(even monetary value) to information. While beyond the
scope of this short introduction, it is worthwhile to consider
2 concepts: the “expected value of perfect information”
(EVPI) and the “expected value of sample information”

(EVSI)5. Assuming there is a penalty for making a wrong
decision, it is logical to ask, “How much would a decision-
maker be willing to pay to know the true value of all
unknown parameters?” In the coin-flip example, if a person
were about to place a bet on heads, how much would they
be willing to pay to know, for certain, the exact probability
of the coin coming up heads? That amount would be the
EVPI — it would depend on the size of the bet and current
knowledge about the probability of heads. If the bet is small
or if one is almost certain of the fairness of the coin, then
EVPI would be small. In medical decision-making exer-
cises, EVPI is high when little is known about parameters
that strongly influence the decision and the penalty of
making the wrong decision is high. All else being equal,
research questions with high EVPI may be given higher
priority over questions with low EVPI.

But, is perfect knowledge really the relevant concept?
The absolute truth is rarely learned all at once; rather, we
learn sequentially by observing samples. It might be
more instructive to ask, “How much would a person be
willing to pay to see 10 flips of the coin before they had
to place a bet on the 11th flip?” That amount describes
the EVSI. When combined with the cost of sampling, it
can be used to determine the optimal design of a clinical
study8.
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Figure 1. Prior and posterior distributions for an unknown treatment success rate.
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CONCLUSION
In summary, there are 4 key messages to take away from this
discussion:
1. Parameter estimates used in decision analyses are
random variables.
2. Uncertainty can be represented by probability distribu-
tions (whether asymptotic or Bayesian posterior, subjective,
or systematic).
3. Uncertainty affects the ability to make clear decisions;
Monte Carlo simulation can be used to visualize that effect.
4. The value of information can be quantified from the deci-
sion-maker’s point of view; this can help prioritize future
research.

It is hoped that this short introduction will spark the
interest of readers to pursue more knowledge about
Bayesian decision analysis (Spiegelhalter, et al6 and Felli
and Hazen7 are excellent starting points).
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Figure 2. A second-order Monte Carlo simulation plot on the cost-effectiveness plane.
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