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Identification of Axial Spondyloarthritis Patients in a
Large Dataset: The Development and Validation of
Novel Methods
Jessica A. Walsh, Shaobo Pei, Gopi Penmetsa, Jared Lareno Hansen, Grant W. Cannon,
Daniel O. Clegg, and Brian C. Sauer

ABSTRACT.   Objective. Observational axial spondyloarthritis (axSpA) research in large datasets has been limited
by a lack of adequate methods for identifying patients with axSpA, because there are no billing codes
in the United States for most subtypes of axSpA. The objective of this study was to develop methods
to accurately identify patients with axSpA in a large dataset. 

                       Methods. The study population included 600 chart-reviewed veterans, with and without axSpA, in
the Veterans Health Administration between January 1, 2005, and June 30, 2015. AxSpA identification
algorithms were developed with variables anticipated by clinical experts to be predictive of an axSpA
diagnosis [demographics, billing codes, healthcare use, medications, laboratory results, and natural
language processing (NLP) for key SpA features]. Random Forest and 5-fold cross validation were
used for algorithm development and testing in the training subset (n = 451). The algorithms were
additionally tested in an independent testing subset (n = 149).

                       Results. Three algorithms were developed: Full algorithm, High Feasibility algorithm, and Spond
NLP algorithm. In the testing subset, the areas under the curve with the receiver-operating character-
istic analysis were 0.96, 0.94, and 0.86, for the Full algorithm, High Feasibility algorithm, and Spond
NLP algorithm, respectively. Algorithm sensitivities ranged from 85.0% to 95.0%, specificities from
78.0% to 93.6%, and accuracies from 82.6% to 91.3%. 

                       Conclusion. Novel axSpA identification algorithms performed well in classifying patients with
axSpA. These algorithms offer a range of performance and feasibility attributes that may be appro-
priate for a broad array of axSpA studies. Additional research is required to validate the algorithms
in other cohorts. (J Rheumatol First Release September 15 2019; doi:10.3899/jrheum.181005)
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Big data research is important for studying uncommon
outcomes and diseases in real-world settings1. In particular,
there are tremendous opportunities to improve knowledge
gaps with axial spondyloarthritis (axSpA) with big data
research, because axSpA concepts have broadened in recent

years2,3. With advances in imaging and treatment, it became
apparent in the 2000s that a large proportion of people with
axSpA phenotypes were unrecognized because their diseases
were inconsistent with traditional concepts of axSpA. Despite
widespread acceptance of the broader axSpA concepts, big
data axSpA research continues to be constrained by outdated
axSpA definitions, because International Classification of
Diseases, 9th and 10th revisions (ICD-9 and ICD-10) billing
codes exist only for the traditionally recognized phenotype
of ankylosing spondylitis (AS)4,5,6,7,8. Thus, nearly one-half
of the 3.2 million Americans with axSpA have been excluded
from big data axSpA research9,10, and there are insufficient
data with important outcomes such as mortality, comor-
bidities, and healthcare use in axSpA populations8. 
    Cohort identification is additionally challenging for
axSpA because the nomenclature surrounding axSpA is
diverse and evolving11. The term axSpA was introduced in
200912, when it became apparent that many patients with
axSpA phenotypes were not identified with traditional criteria
for SpA in the axial skeleton13. Since then, new terms have
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been coined to describe axSpA phenotypes14, and the use of
axSpA terms has varied widely among patients, providers,
and other interested parties.
    With other conditions, various approaches have been used
for cohort identification, when billing codes were insuffi-
cient. The most common include rule-based approaches and
natural language processing (NLP)15. With a rule-based
approach, combinations of structured (coded) data may be
used to identify patients with a specific condition. For
example, ICD codes, disease-modifying antirheumatic drugs
(DMARD), and laboratory data [rheumatoid factor or
anticyclic citrullinated peptide antibodies (anti-CCP)] were
used to identify patients with rheumatoid arthritis (RA)16.
With NLP, computers can be trained to identify language in
the free text of clinical documents that indicates the presence
of specific conditions. For example, computers may be
trained to identify variations of the term rheumatoid arthritis
and to use the surrounding text to classify the terms as “yes”
(RA present) or “no” (RA not present). 
    Our goal was to develop accurate methods for identifying
patients with axSpA in large datasets. Given the challenges
with insufficient billing codes and evolving axSpA nomen-
clature, we elected to use a combination of coded and NLP
data. In our previous work, we first described the devel-
opment of 3 NLP algorithms that accurately classified axSpA
concepts, including diagnostic language (spond*) and key
disease features (sacroiliitis and HLA-B27 positivity)17.
Second, we described our strategy and processes for estab-
lishing an appropriate sample of patients for developing and
testing axSpA identification algorithms18. In this third stage
of developing axSpA identification methods, the objectives
were to develop and validate algorithms to accurately classify
patients as having or not having axSpA.

MATERIALS AND METHODS
Design, setting, and data sources. This study used historical data from
veterans enrolled in the US Veterans Health Administration (VHA). The data
source was the Corporate Data Warehouse, a national repository of data from
the VHA medical record system and other VHA clinical and administrative
systems19. The patient Integration Control Number was used to link patients
across VHA stations. Data were housed and analyzed within the Veterans
Affairs (VA) Informatics and Computing Infrastructure20. This research was
conducted in compliance with the Helsinki Declaration, with the approval
of the University of Utah Institutional Review Board (IRB_00052363).
Population. The study population consisted of 600 veterans enrolled in the
VHA between January 1, 2005, and June 30, 2015. A detailed description of
this patient sample and the processes for selection and chart review of the
sample was previously published19. In short, a risk-stratified approach to
selecting patients was applied that enriched the population with patients at
high risk of axSpA to ensure that a sufficient number of patients in the
sample had axSpA. To maximize generalizability, patients at low risk for
axSpA were also included. Risk was assigned according to variables that
clinical experts anticipated to be associated with high, intermediate, and low
risk for axSpA. Veterans with HLA-B27 positivity or ≥ 1 AS ICD-9 code
were assigned to the high-risk stratum. Veterans with ≥ 1 ICD-9 code for a
non-AS SpA subtype or sacroiliitis were assigned to the moderate-risk
stratum. Veterans with ≥ 1 ICD-9 code for a SpA mimic or chronic back pain

were assigned to the low-risk stratum. From each stratum, 200 veterans (600
total) were randomly selected into the study sample. 
     Rheumatologist chart reviewers classified the 600 sampled veterans as
having or not having axSpA, according to expert opinion and chart review
guidelines (Supplementary Data 1, available with the online version of this
article). Of the 600 sampled patients, 162 (27.0%) had axSpA and 438
(73.0%) did not have axSpA. Among the 162 patients with axSpA, 125
(77.2%) were from the high-risk stratum, 34 (20.1%) were from the
moderate-risk stratum, and 3 (1.9%) were from the low-risk stratum. Among
the 438 patients without axSpA, 75 (17.1%) were from the high-risk
stratum, 166 (37.9%) were from the moderate-risk stratum, and 197 (45.0%)
were from the low-risk stratum. The sample of 600 chart-reviewed patients
was randomly subdivided into a training set (n = 451) for algorithm devel-
opment and a testing set (n = 149) for independent validation of the
algorithms. 
Variables. Clinical experts selected 49 variables anticipated to be useful in
differentiating people with axSpA from people without axSpA. These
variables included both structured data and extracts from unstructured
medical notes. Structured data included diagnosis codes (Supplementary
Table 1, available with the online version of this article) for SpA and
overlapping conditions (AS, undifferentiated SpA, Crohn disease, uveitis,
back pain, etc.), laboratory data relevant to SpA [C-reactive protein (CRP),
erythrocyte sedimentation rate (ESR), HLA-B27], medications frequently
used to treat SpA (biologic and synthetic disease-modifying antirheumatic
drugs), healthcare use patterns (no. rheumatology visits, no. visits with other
provider types), and comorbidities as measured by the Rheumatic Disease
Comorbidity Index (RDCI)21. NLP was used to extract information not
readily available in structured data, including the concepts of sacroiliitis,
HLA-B27 positivity, and terms containing the “spond-” prefix. 
Algorithm development and validation. Three algorithms were developed
including the Full algorithm, the High Feasibility algorithm, and the Spond
algorithm (R code in Supplementary Data 2, available with the online version
of this article)22. The Full algorithm is the most inclusive and resource-inten -
sive with 3 NLP algorithms and 46 coded variables. The High Feasibility
algorithm included only 16 coded variables. The Spond NLP algorithm
included only the NLP algorithm for Spond. Random Forest and 5-fold cross
validation were used to develop and test the Full algorithm and High
Feasibility algorithm23,24,25,26. To reduce bias, out-of-bag error estimates
were used within the training subset (n = 451)23. Random Forest was not
necessary for the Spond NLP algorithm, because it was treated as a single
variable. 
      The development of the NLP algorithms was described in a previous
publication18. In short, terms representing the concepts of SpA, sacroiliitis,
and HLA-B27 positivity were explored by clinical experts, and sections of
text containing clinically meaningful terms (snippets) were extracted from
clinical notes. With annotation, clinical experts reviewed the snippets and
classified them according to whether they represented the intended axSpA
concept. With supervised machine learning on the annotated snippets,
computers were trained to replicate the clinical experts’ snippet classifica-
tions (Library for Support Vector Machines, version 3.21)27. The accuracies
of the NLP algorithms in an independent dataset of annotated snippets were
91.0% for Spond, 92.0% for sacroiliitis, and 99.0% for HLA-B27 positivity.
The Spond NLP was used in 2 ways. In the Full algorithm, it served as a
variable, in combination with the 46 coded variables and the 2 other NLP
variables. Since our preliminary assessment of the Spond NLP suggested
that it performed well independently of other variables, it was also validated
in this study population as a standalone instrument for classifying patients
as having or not having axSpA.
      For the High Feasibility algorithm, variables were selected according to
importance rankings determined with Random Forest Mean Decrease Gini
scores that take into account the magnitude of effect and frequency of each
variable in the population28. The 3 NLP variables were excluded because
they were more resource-intensive to apply than the coded variables. The
remaining 46 coded variables were ranked from highest to lowest impor-
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tance. Error rates were calculated for 46 candidate algorithms that ranged in
size from 1 coded variable to 46 coded variables. The lowest error rate was
balanced with the lowest number of coded variables to select the candidate
algorithm that served as the High Feasibility algorithm. 
Statistics. Sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) were used to assess the performances of
the algorithms and the AS ICD-9 codes. Performance was also measured
with concordance (accuracy), discordance (percentage of population with
false-positive and false-negative classifications), and receiver-operating
characteristic (ROC) curves29. CI were determined with bootstrapping, with
sampling with replacement of the observed data 500 times30.

RESULTS
Population. Among the 600 veterans selected for chart
review, 162 (27%) were classified as having axSpA (Yes
axSpA), and the remaining 438 (73%) were classified as not
having axSpA (No axSpA). Compared to the No axSpA
group, the Yes axSpA group had a younger mean age, a higher

percentage of males, a lower percentage of CCP positivity, a
higher percentage with HLA-B27 testing, and a higher
percentage with DMARD exposure. Demographic details and
other characteristics of the subjects are in Table 1.
Variable selection for the High Feasibility algorithm. The
variables with the highest Random Forest Mean Decrease
Gini importance scores were selected for the High Feasibility
algorithm (Figure 1). The number of AS ICD-9 codes and
number of rheumatology visits during the study period had
the highest importance scores. Additional variables ranked
among the top 16 most important included number of tests
for inflammatory markers (CRP, ESR), number of provider
visits (any specialty), exposure to a biologic DMARD, age,
geographic region, duration of VA system use, HLA-B27
result, and number of ICD-9 codes indicative of various axial
skeleton conditions. 
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Table 1. Demographics, characteristics, and healthcare use in sample of veterans at risk for axSpA.

Variables                                                                                          Yes axSpA, n = 162                                     No axSpA, n = 438
                                                                                                N or Mean     SD or % 95% CI                    N or Mean SD or % 95% CI

Demographics                                                                                                                                                                                                                  
Age at cohort entry, yrs                                                            56.2             13.5             54.1        58.3                     59.8           13.3               58.6        61.1
Sex, male                                                                                   155              95.7             91.4        97.9                     391           89.3               86.0        91.8
Race                                                                                                                                                                                                                             
White                                                                                       128              79.0             72.1        84.6                     327           74.7               70.4        78.5
Black                                                                                        18               11.1              7.1         16.9                      67            15.3               12.2        19.0
Other                                                                                         2                 1.2               0.3          4.4                        6              1.4                 0.6          3.0
Unknown                                                                                  14                8.6               5.2         14.0                      38             8.7                 6.4         11.7

Ethnicity                                                                                                                                                                                                                       
Non-Hispanic                                                                          144              88.9             83.1        92.9                     394           90.0               86.8        92.4
Hispanic                                                                                    7                 4.3               2.1          8.7                       21             4.8                 3.2          7.2
Unknown                                                                                  11                6.8               3.8         11.8                      23             5.3                 3.5          7.8

Geographic region at cohort entry                                                                                                                                                                               
Southeast                                                                                  57               35.2             28.3        42.8                     167           38.1               33.7        42.8
North Atlantic                                                                           35               21.6             16.0        28.6                      91            20.8               17.2        24.8
Midwest                                                                                    30               18.5             13.3        25.2                      70            16.0               12.9        19.7
Continental                                                                               22               13.6              9.1         19.7                      62            14.2               11.2        17.7
Pacific                                                                                      18               11.1              7.1         16.9                      48            11.0                8.4         14.2

Laboratory tests                                                                                                                                                                                                               
C-reactive protein, mean (mg/l)                                               19.4             29.4             14.2        24.5                     18.3           39.3               12.7        24.0
ESR, mean, mm/h                                                                    25.3             26.1             20.9        29.7                     22.1           23.9               19.2        25.0
RF tested                                                                                    65               40.1             32.9        47.8                     162           37.0               32.6        41.6
RF-positive, among tested patients                                             9                13.9              7.5         24.3                      28            17.3               12.2        23.9
CCP tested                                                                                  33               20.4             14.9        27.2                      68            15.5               12.4        19.2
CCP-positive, among tested patients                                          0                 0.0               0.0          0.0                       12            17.7               10.4        28.4
HLA-B27 tested                                                                         72               44.4             37.0        52.1                      81            18.5               15.1        22.4
HLA-B27–positive, among tested patients                                59               81.9             71.5        89.1                      66            81.5               71.7        88.4
HLA-B27–positive, among tested patients not selected 

into population for HLA-B27 positivity*                              21               61.8             45.0        76.1                       4             21.1               11.8        48.8
DMARD                                                                                                                                                                                                                          

≥ 1 biologic during study period                                                72               44.4             37.0        52.1                      40             9.1                 6.8         12.2
≥ 1 nonbiologic during study period                                          52               32.1             25.4        39.6                      81            18.5               15.1        22.4

Healthcare use within the VA                                                                                                                                                                                          
Active system use duration during study period, yrs                9.3               2.0               9.0          9.6                       9.0             2.4                 8.7          9.2
No. provider visits/yr during active system use                      43.6             39.3             37.5        49.6                     44.5           42.0               40.6        48.5

* The 100 patients who were selected into the study population specifically because of a positive HLA-B27 test were excluded. RF: rheumatoid factor; CCP:
cyclic citrullinated peptide antibody; DMARD: disease-modifying antirheumatic drugs; ESR: erythrocyte sedimentation rate; axSpA: axial spondyloarthritis;
VA: (US) Veterans Affairs.
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Performance of axSpA identification methods: traditional
methods. In the subset of patients at risk for axSpA who were
not selected to the study population specifically because of
an AS ICD-9 code (n = 500), the sensitivity, specificity, PPV,
and NPV of an AS ICD-9 code for axSpA were 57.3%,
96.9%, 76.8%, and 92.8%, respectively. 

Performance of axSpA identification methods: novel
methods. In the testing subset, the areas under the curve with
the ROC analysis for the Full algorithm, High Feasibility
algorithm, and Spond NLP algorithm were 0.96, 0.94, and
0.86, respectively (Figure 2). The sensitivity, specificity, PPV,
and NPV were similar in the training and testing subsets
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Figure 1. Variables in High Feasibility algorithm according to Random Forest importance scores. ICD9: International
Classification of Diseases, 9th revision; CRP: C-reactive protein; DMARD: disease-modifying antirheumatic drug; ESR:
erythrocyte sedimentation rate; VA: Veterans Affairs; DISH: diffuse idiopathic skeletal hyperostosis.

Figure 2. Receiver-operating characteristic curves in the testing subset (n = 149). Area under the curve: Spond NLP algorithm
0.86, High Feasibility algorithm 0.94, Full algorithm 0.96. NLP: natural language processing.
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(Figure 3). In the testing subset, the sensitivity, specificity,
PPV, and NPV of the Full algorithm were 87.5%, 91.7%,
79.5%, and 95.2%, respectively. For the High Feasibility
algorithm, the sensitivity, specificity, PPV, and NPV were
85.0%, 93.6%, 82.9%, and 94.4%, respectively. For the
Spond NLP algorithm, the sensitivity, specificity, PPV, and
NPV were 95.0%, 78.0%, 61.3%, and 97.7%, respectively.
    The classification concordance (accuracy) was also
similar in the training and testing subsets (Figure 4). In the
testing subset, concordance was achieved with 90.6%, 91.3%,
and 82.6% of patients with the Full algorithm, High
Feasibility algorithm, and the Spond NLP algorithm, respec-
tively. The percentages of the population with false-positive

and false-negative classifications were similar (3.4%–6.0%
testing subset) for the Full algorithm and the High Feasibility
algorithm. With the Spond NLP algorithm, the percentage of
false positives was higher than the percent of false negatives
(16.1% vs 1.3% testing subset).

DISCUSSION
We developed novel methods for identifying patients with
axSpA. These methods will enable the development of more
inclusive axSpA cohorts than traditional cohort identification
methods and may be used to study a variety of poorly under-
stood outcomes in axSpA, such as mortality, comorbidities,
treatment patterns, healthcare use, and costs. 
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Figure 3. Sensitivity, specificity, PPV, and NPV of axial spondyloarthritis identification methods. PPV: positive predictive value;
NPV: negative predictive value; NLP: natural language processing.
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    With other conditions, cohort identification methods have
been applied that similarly used combinations of structured
(coded) data and unstructured data from clinical notes. For
example, coded data and simple queries in the text of clinical
documents were used to identify dialysis patients, with
precision (PPV) of 78.4% and recall (sensitivity) of 100%31.
Structured data and unstructured data were also successfully
used to identify patients eligible for clinical trials (ROC =
0.95)32. In another study, NLP methods were compared to
structured data extraction methods for identifying patients
undergoing diabetic dialysis; the NLP methods were more
sensitive than the coded data extraction methods (89.4% vs
54.9%)16. These studies demonstrated that methods using
unstructured data (simple queries and NLP) are useful in

cohort identification and may be particularly powerful when
combined with structured data extraction methods. 
    The algorithms developed in our study differ in their
performance and feasibility and may be used for different
purposes. The Full algorithm and the High Feasibility
algorithm had high specificity and may be implemented when
low false-positive rates are desired (i.e., treatment consider-
ations). Conversely, the Spond NLP model was more
sensitive and may be best when more inclusive identification
is desired (i.e., screening for people at high risk of axSpA).
The High Feasibility algorithm is the simplest to use and may
be applied and tested relatively easily in different datasets.
    Strengths of our study include the use of robust,
well-characterized data. The study sample was classified and
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Figure 4. Algorithm concordance (accuracy) with axial spondyloarthritis classification by chart review. NLP: natural language
processing.
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phenotyped by rheumatologist chart reviewers specializing
in SpA19. The NLP variables were highly accurate and previ-
ously validated in a population of veterans18. Methods for
extracting, cleaning, and interpreting the coded variables used
in this project were also evaluated and refined for the study
population19,33,34,35,36,37.
    Limitations of our study include the limited generaliz-
ability of the algorithms to other datasets. While the
chart-reviewed population in which the algorithms were
developed was designed to maximize both feasibility and
generalizability, this population is not identical to the general
veteran population. Currently the algorithms can be applied
to VA populations at risk for axSpA who are selected in the
same manner that the chart-reviewed population was selected
(with specific variables associated with high, moderate, and
low risk of axSpA). To bypass this initial selection step and
make the algorithms generalizable to the general veteran
population, the algorithms may be tested and refined in that
population. Likewise, the VA population is different from
other large data populations and the algorithms will require
testing prior to use in non-VA datasets. 
    Another limitation is that the algorithms with NLP (Full
algorithm and Spond algorithm) are relatively resource-inten -
sive when applied on a large scale, requiring both bioinfor-
matics expertise and computing resources. Further, the PPV
in this study population were likely overestimated relative to
the general population and the NPV were likely underesti-
mated, because disease prevalence influences predictive
values and the study population was enriched for axSpA. The
Full and High Feasibility algorithms were also limited in that
they were not inclusive of ICD-10 codes, because ICD-10
codes were not yet implemented in clinical practice during
the study period. 
    Novel methods for accurately identifying patients with
axSpA in a large dataset were developed. Compared to tradi-
tional methods of cohort identification, the novel methods
were more inclusive (sensitive) and more representative of
the broadening concepts of axSpA. Additional research is
required to apply these methods to other populations to facil-
itate a wide range of previously impractical big data research
in axSpA. 

ONLINE SUPPLEMENT
Supplementary material accompanies the online version of this article.
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