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Proteomic Investigation of Dermal Fibroblasts Isolated
from Affected and Unaffected Skin Samples from
Patients with Limited Cutaneous Systemic Sclerosis: 
2 Distinct Entities?
Claudio Corallo, Annalisa Santucci, Giulia Bernardini, Natale Figura, Roberto Leoncini, 
Giulia Riolo, Antonio Montella, Chiara Chirico, Ranuccio Nuti, and Nicola Giordano

ABSTRACT. Objective. To identify using proteomic analysis the proteins of altered abundance in the affected and
unaffected limited cutaneous systemic sclerosis (lcSSc) skin fibroblasts.
Methods. Excision biopsies (3 mm) were obtained from the affected and unaffected skin of 5 patients
with lcSSc. Dermal fibroblasts were isolated enzymatically. Two-dimensional gel electrophoresis was
used to separate and define proteins in affected and unaffected fibroblast lysates. Proteins of altered
abundance were identified by mass spectrometry. Differences among skin samples were confirmed
also by immunohistochemistry (IHC) and by quantitative real-time PCR (qRT-PCR) for type I collagen
(Col-1) and vimentin (VIM).
Results. Proteomic analysis revealed different expressions of proteins involved in cytoskeleton organ-
ization (27%), extracellular matrix remodeling (11%), response to oxidative stress (22%), energy
metabolism (19%), protein metabolism (5%), cellular homeostasis (5%), signal transduction (3%),
and protein transcription, synthesis, and turnover (8%). IHC analysis showed that SSc-affected
epidermis is thickened and the dermis is strongly reactive to Col-1 and VIM (typical markers of
activated myofibroblasts) compared to SSc-unaffected skin, whose stainings are comparable to those
of control healthy skin. Overexpression of Col-1 and VIM mRNA levels in affected lcSSc fibroblasts
compared to unaffected lcSSc ones was confirmed by qRT-PCR.
Conclusion. Consistent with previous studies, these findings are important for 2 reasons: first, because
they reveal the opposite behavior of dermal fibroblasts in the unaffected and affected skin areas of
the same patient with lcSSc; second, because they demonstrate the histological/histochemical similar-
ities between unaffected skin from patients with lcSSc and healthy control skin. (J Rheumatol First
Release December 1 2016; doi:10.3899/jrheum.160736)
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Systemic sclerosis (SSc) is an autoimmune connective tissue
disease characterized by vascular injury and fibrosis of the

skin and internal organs1. Subsets of SSc are limited
cutaneous SSc (lcSSc), diffuse cutaneous SSc (dcSSc), and
SSc without skin involvement2. Persistent fibroblast
activation is central to pathogenesis, and SSc fibroblasts have
increased ability to secrete, adhere to, and contract extracel-
lular matrix3, although the initiating factors leading to
fibroblast activation are not completely understood. Changes
in the dermis have received much attention in SSc, because
overproduction of extracellular matrix by dermal fibroblasts
accounts for much of the pathological skin thickening and
scarring seen in the disease4. The clinical semiquantitative
assessment of skin thickness by palpation, modified Rodnan
skin score (mRSS), is considered the gold standard and often
the only primary outcome measure used in clinical trials of
SSc disease-modifying agents1,2. This subjective and highly
variable assessment is fraught with inaccuracies, as pointed
out in the literature5. Therefore, it is generally accepted that
the development of objective and reliable markers reflecting
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the severity of skin fibrosis would be of great value for
improving the performance of clinical trials and the accurate
assessment of the efficacy of a given treatment6. In our
present study, we describe the results of a proteomic analysis
of the lysates of fibroblasts isolated from the affected and
unaffected skin areas of the same patient with lcSSc. The
proteomic analysis allowed the identification of several
proteins differently expressed by the 2 fibroblast populations,
reflecting the increased fibrogenesis of those belonging to
affected skin areas. In fact, thanks to the first proteomic
screening, we selected a couple of unaffected and affected
lcSSc skin samples for the presence of both protein (immuno-
histochemistry) and mRNA levels [quantitative real-time
PCR (qRT-PCR)] of those putative biomarkers: they may be
useful to assess the extent and severity of the SSc fibrotic
process and contribute to better understanding the patho-
genetic mechanism of the disease.

MATERIALS AND METHODS
Skin biopsy and fibroblast isolation and culture. Patients selected for
inclusion in the study were women from the lcSSc subset age 55 ± 8.6 (mean
± SD) years, with disease duration 6 ± 3.9 years. Ethical approval was
obtained for the study from the ethics committee of the University of Siena
(n. CELAOUS28022012) in accordance with the Helsinki Declaration of
1975, and patients gave written informed consent to participate in the study.
The 3-mm excision biopsies were obtained from the affected skin (third
finger, mRSS graded 2 at biopsy site) and from unaffected skin
(mid-forearm, mRSS graded 0 at biopsy site). The lcSSc unaffected skin was
defined by both clinical palpation and by histological examination that
excluded SSc-related lesions. Biopsies were taken prior to commencement
of immunosuppressive or disease-modifying treatments. The biopsy samples,
processed within 1 h of excision, were divided in half: 1 for histopathological
and immunohistochemical analysis, and the other for establishment of
dermal fibroblast cell strains. For this purpose, fibroblasts were isolated from
skin specimens by enzymatic digestion. Briefly, explants were de-
epidermized using a dispase solution (dispase activity 14 U/ml; Sigma-
Aldrich) for 2 h at 37°C and then were dissolved into a collagenase III
solution (2.4 U/ml; Sigma-Aldrich) for 30 min. Fibroblasts obtained were
passaged twice and cultured at density of 1 × 106 cells/flask in Dulbecco
modified Eagle’s medium (all substances Sigma-Aldrich) supplemented with
penicillin (100 U/ml), streptomycin (100 µg/ml), 0.25 µg/ml amphotericin
B, 2 mM glutamine, and 10% fetal bovine serum, and incubated at 37°C in
an atmosphere of 5% CO2 95% air, till confluence (1 week) onto 75 cm2
flasks (BD Costar). Viability was estimated by trypan blue (Sigma-Aldrich).
Fibroblasts were used at third passage for experiments.
Protein extraction and 2-dimensional electrophoresis (2DE). Proteomic
profiling was based on skin biopsy material (affected and unaffected fibro -
blasts) from 5 patients with lcSSc. Dermal fibroblasts were lysed and
dissolved in a conventional 2-dimensional lysis buffer [8 M urea, 4% (w/v)
3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate, 40 mM Tris
base, 65 mM dithioerythritol, and a trace of bromophenol blue]. Protein
concentration was calculated with Bradford assay7. The 2DE was carried
out for 5 pooled unaffected or 5 pooled affected fibroblast samples using the
Immobiline-polyacrylamide system8. Isoelectric focusing (IEF) was carried
out on a preformed immobilized non-linear pH gradient, from pH 3 to 10,
18-cm strips (GE Healthcare), and performed using the Ettan IPGphor
system (GE Healthcare). Sample load was 90 μg per strip in analytical runs,
and 1 mg per strip in mass spectrometry (MS) preparative gels. Analytical
strips were rehydrated for 1 h at 0 V and for 8 h at 30 V, at 16ºC. 

Then the proteins were focused under the following electrical conditions
at 16°C: 200 V for 1 h, from 300 to 3500 V in 30 min, 3500 V for 3 h, from

3500 to 8000 V in 30 min, 8000 V up to a total of 80,000 Vh. MS-preparative
strips were rehydrated with 350 μl of lysis buffer and 2% v/v carrier
ampholyte at room temperature for 12 h. Sample load was performed using
a cup loading method, with the cup applied at the cathodic and anodic ends
of the strip. For MS-preparative runs, IEF was performed using the
Multiphor II electrophoresis system (GE Healthcare) according to the
following voltage steps at 16°C: 200 V for 6 h, 600 V for 1 h, 1200 V for 
1 h, 3500 V for 3 h, 5000 V for 14 h. After the first dimension run, the
analytical and preparative immobilized pH gradient gels were equilibrated
in 6 M urea, 2% w/v sodium dodecyl sulfate (SDS), 2% w/v dithioerythritol,
30% v/v glycerol, and 0.05 M Tris-HCl pH 6.8 for 12 min; and for further 
5 min in 6 M urea, 2% w/v SDS, 2.5% w/v iodoacetamide, 30% v/v glycerol,
0.05 M Tris-HCl pH 6.8, and a trace of bromophenol blue. The second
dimension was carried out, at 10°C, on 9%–16% polyacrylamide linear
gradient gels (18 × 20 cm × 1.5 mm) at 40 mA/gel constant current, until
the dye front reached the bottom of the gel9. Analytical gels were stained
with ammoniacal silver nitrate10,11. MS-preparative gels were stained
according to a silver stained protocol compatible with MS according to the
manufacturer’s instructions. Silver-stained gels were then digitalized using
the Image Scanner III laser densitometer (GE Healthcare). Computer-aided
2-dimensional image analysis was carried out with the Image Master
Platinum 7.0 software (GE Healthcare). Spot detection was achieved after
defining and saving a set of detection variables, enabling filtering and
smoothing of the original gel scans to clarify spots, and removal of vertical
and horizontal streaks and speckles. The analysis process was performed by
matching the gels of each group with a reference gel named “master” by the
software. By this procedure, the Image Master Platinum algorithm matched
the other gels to find qualitative and quantitative differences.
Analysis with MS. Protein identification was carried out by peptide mass
fingerprinting on an Ultraflex III matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF/TOF) mass spectrometer (Bruker Daltonics)12.
Electrophoretic spots from silver-stained gels were manually excised,
de-stained, and dehydrated in acetonitrile. Then the spots were rehydrated
in trypsin solution (Sigma-Aldrich) and in-gel protein digestion was
performed overnight at 37°C. For each protein digest, 0.75 µl was spotted
onto the MALDI target and allowed to dry. Then 0.75 μl of matrix solution
[saturated solution of alpha-cyano-4-hydroxycinnamic acid in 50% (v/v)
acetonitrile and 0.5% (v/v) trifluoroacetic acid] was applied to the dried
sample, and allowed to dry again. Tryptic peptide masses were automatically
acquired by the Flex Analysis software (Bruker Daltonics). Mass finger-
printing searching was carried out in Swiss-Prot/TrEMBL database using
MASCOT (Matrix Science Ltd.) software available online. Taxonomy was
limited to Homo sapiens, mass tolerance was < 100 ppm, and the number of
accepted missed cleavage sites was set to 1. Alkylation of cysteine by
carbamidomethylation was assumed as fixed modification, while oxidation
of methionine was considered as a possible one. The criteria used to accept
protein identification were sequence coverage, number of matched peptides,
and probabilistic score. For tryptic peptides that did not produce an unambig -
uous identification, peptide sequencing by tandem mass spectrometry on the
Ultraflex III MALDI-TOF/TOF mass spectrometer (Bruker Daltonics) was
performed. MS/MS database searching was carried out using Flex Analysis
algorithm (Bruker Daltonics) and Mascot MS/MS ion search software in
Swiss-Prot/TrEMBL database. Search criteria applied were MS mass
accuracy ± 1.2 Da, MS/MS mass accuracy ± 0.6 Da, 1 accepted missed
cleavage, carbamidomethylation of cysteine as a fixed modification, and
oxidation of methionine as a possible one. After identification, each spot of
the unaffected and affected fibroblast gels was compared to a calibrated
reference gel of healthy human dermal fibroblasts of the Siena 2D-Database
( w w w. b i o - m o l . u n i s i . i t / c g i - b i n / 2 d / 2 d _ v i e w _ m a p . c g i ? m a p =
HUMAN_DERMAL_FIBROBLASTS_CL&ac=all; data not shown).
Functional classification. The UniProt Knowledgebase (UniProtKB) was
used as the central hub for the collection of functional information on
identified proteins, with accurate, consistent, and rich annotation. Our dataset
was also analyzed using the DAVID software to check for biological
processes (expressed in terms GO) associated to proteins found in altered
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abundance. DAVID software is a Web-accessible program that provides a
complete set of bioinformatic tools for the functional characterization13.
DAVID is able to help in understanding the biological significance hidden
within a more or less extensive dataset14.
Immunohistochemistry. The 3-mm punch biopsies were embedded in
Tissue-Tek optimum cutting temperature compound (Sakura Finetek)
fixation medium and frozen in isoprenalol cooled by liquid nitrogen, and
then stored at –70°C prior to analysis. Healthy skin samples (matched for
age, sex, and site) that served as control references were taken from the Skin
Biobank of the Dermatology Unit of University Hospital Le Scotte in Siena.
Sections were cut at 5 μm using a cryostat and then fixed in ice-cold acetone.
Primary antibodies were used as follows: rabbit polyclonal anti-type I
collagen (Col-1; Abcam), rabbit polyclonal anti-vimentin (anti-VIM;
Abcam). Optimum dilution for the primary antibodies was determined 
by serial dilution. Bound primary antibodies were revealed using
species-specific biotinylated secondary antibodies for 1 h. Binding deter-
mined using the avidin/biotin complex system (Vector) and absolute
eosinophil count substrate for peroxidase-red (Vector SK 4200). All sub -
sequent steps were done at room temperature. Stained sections were imaged
using Zeiss Axioscope.
RNA isolation and qRT-PCR. Healthy dermal fibroblasts that served as
control references were taken from the Skin Biobank of the Dermatology
Unit of University Hospital Le Scotte. Fibroblasts from lcSSc-affected
subjects, unaffected subjects, and healthy controls were collected in TRIZOL
reagent (Sigma-Aldrich). Total RNA was extracted following the manufac-
turer’s instructions. The total RNA content of the samples was quantified by
measuring the absorbance at 260 nm, by Ultrospec2000 spectrophotometer
(Amersham Pharmacia Biotech). The RNA was then reverse-transcribed
using random hexamer MultiScribe enzyme (Applied Biosystems Group).
The StepOne Real-Time PCR System instrument (Applied Biosystems
Group) with TaqMan chemistry was used to run qRT-PCR reactions. Two
microliters of cDNA in a final volume of 20 μl was amplified using the 20
× Assays-on-Demand gene expression assay mix (Applied Biosystems
Group). Specific primers were designed on the basis of the reported
sequences [Primer bank NCBI; Col-1: 5ʹ-AGG GCC AAG ACG AAG ACA
GT-3ʹ (forward) and 5ʹ-AGA TCA CGT CAT CGC ACA ACA-3ʹ (reverse);
VIM: 5ʹ-GCA AAG ATT CCA CTT TGC GT-3ʹ (forward) and 5ʹ-GAA ATT
GCA GGA GGA GAT GC-3ʹ (reverse)]. TaqMan probes, specific primers,
and ribosomal 18S, selected as the housekeeping gene, were purchased from
Applied Biosystems Group. The mRNA levels were normalized to those of
18S, and the relative mRNA levels after the treatment were calculated using
the ΔΔCT method15.
Statistical analysis. For proteomic analysis, significant changes in abundance
of proteins in the unaffected and affected fibroblast samples were determined
based on a fold increase or decrease in protein level compared to standard
values. Student’s t test was used for comparison of mean intensities between
unaffected and affected fibroblasts, using a threshold of p < 0.05 to establish
the statistical significance of changes seen. Three technical replicates were
performed. Real-time PCR statistics was performed using REST (Relative
Expression Software Tool). Data are reported as mean fold change ± SD of
3 technical replicates. Significance was set at p < 0.05.

RESULTS
Proteins of altered abundance in affected vs unaffected lcSSc
fibroblasts. Composite images representative of the normal
gel images are shown in Figure 1. The 37 protein spots for
which unequivocal identities were obtained by MALDI-TOF
MS are listed in Table 1. The comparison of lcSSc fibroblast
gels with the healthy fibroblast reference gel found in the
Siena 2D-Database revealed that lcSSc unaffected fibroblasts
show a proteomic profile similar to healthy ones, but a
different profile compared to lcSSc affected fibroblasts (data

not shown). The UniProtKB functional classification of
proteins found in altered abundance (Figure 2) indicates that
lcSSc-affected fibroblasts show an impaired synthesis of
proteins involved in cell organization (27%), in stress
response and cellular defense (22%), in energy production
(19%), and in the organization of the extracellular matrix
(11%). Other functional classes less represented are the
proteins involved in the synthesis and turnover (8%), in
signal transduction (3%), associated to cellular homeostasis

3Corallo, et al: Dermal fibroblasts in lcSSc
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Figure 1. Proteomic analysis of lcSSc unaffected (a) and affected (b) fibro -
blasts. Protein extracts of fibroblasts from unaffected skin samples (n = 5
pooled) and affected ones (n = 5 pooled) were separated by 2DE under pH
gradients pH 3–10. Mean intensity for each protein spot was determined for
unaffected and affected samples. Proteins of altered abundance are outlined
in gels and numbered from 1 to 37. The corresponding proteins are listed in
Table 1. Three technical replicates were performed. lcSSc: limited cutaneous
systemic sclerosis; 2DE: 2-dimensional electrophoresis.
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(5%), and in the metabolism of proteins (5%). The functional
classification analyzed by DAVID software is also reported
in Table 2.
Immunohistochemistry of affected and unaffected lcSSc total
skin samples and of healthy control skin. Figure 3 shows the
H&E (top panels), Col-1 (middle panels), and VIM (bottom
panels) stainings of lcSSc affected, lcSSc unaffected, and

healthy control skin samples. H&E staining shows increased
epidermal thickness of lcSSc affected skin compared to lcSSc
unaffected and to healthy control skin. The dermis of affected
lcSSc skin is strongly reactive to Col-1 and VIM, typical
markers of activated myofibroblasts, compared to lcSSc
unaffected and healthy control skin.
Results of qRT-PCR. Figure 4 shows qRT-PCR results related

6 The Journal of Rheumatology 2017; 44:2; doi:10.3899/jrheum.160736

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2016. All rights reserved.

Figure 2. UniProt Knowledgebase functional classification of the biological processes associated to proteins
found in altered abundance in lcSSc-affected fibroblasts. lcSSc: limited cutaneous systemic sclerosis.

Figure 3. Histological H&E staining (top panels) of healthy control (HC), lcSSc-unaffected, and lcSSc-affected
skin samples, respectively. H&E shows increased epidermal thickness of lcSSc-affected skin compared to
lcSSc-unaffected and HC skin. Shown are type I collagen (Col-1; middle panels) and vimentin (VIM; bottom
panels) stainings of healthy control, lcSSc-unaffected, and lcSSc-affected skin samples, respectively. In dermis of
lcSSc-affected skin, fibroblasts (arrows) are strongly reactive to Col-1 and VIM, compared to lcSSc-unaffected
and HC skin samples. NC (negative control) was obtained by replacing the primary antibodies with phosphate
buffered saline. lcSSc: limited cutaneous systemic sclerosis.
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to Col-1 (left) and VIM (right) mRNA levels in lcSSc
affected, lcSSc unaffected, and healthy control fibroblasts.
Col-1 mRNA levels are statistically higher in lcSSc affected
fibroblasts compared to lcSSc unaffected ones (p < 0.05) and
healthy controls (p < 0.01). VIM mRNA levels are over -
expressed in lcSSc affected fibroblasts compared to lcSSc
unaffected ones (p < 0.01) and healthy controls (p < 0.01).

DISCUSSION
In our study, using proteomic analysis, we have identified
changes in the pattern of protein expression in affected and
unaffected skin fibroblasts of patients with lcSSc. Using 2DE
followed by computer analysis, we demonstrated proteins
present in altered abundance in the 2 skin biopsy samples.
By using peptide profiling with MALDI-TOF MS, we were
able to identify 30 proteins elevated and 7 proteins decreased
in lcSSc-affected fibroblasts. Consistent with previous

studies16,17, proteins of altered abundance include proteins
involved in extracellular matrix (ECM) production18, myo -
fibroblast contractility19, response to oxidative stress20,
cellular homeostasis21, and energetic metabolism22. It is
common knowledge that ECM protein overexpression plays
a crucial role in the development and persistence of fibrosis
in SSc23,24,25. Our proteomic data confirm the increase of
ECM components in lcSSc-affected fibroblasts, in particular
collagen α-1 (type I) and collagen α-2 (type I). It has been
demonstrated that high type I collagen levels in SSc are corre-
lated more with elevated mRNA steady-state levels rather
than on the transcriptional activation of the relative genes: in
fact, collagen mRNA transcripts in SSc fibroblasts were
found to be more stable (half-life of 5 h) compared with
control cells (half-life of 2 h)26. In this process, a crucial role
is played by VIM filaments, whose association with collagen
mRNA is responsible for the stabilization of the same

7Corallo, et al: Dermal fibroblasts in lcSSc
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Table 2. Cellular processes that are highly represented in proteins with impaired synthesis of affected lcSSc fibroblasts, selected by the DAVID software 
(p < 0.05).

Biological Process Enrichment Score p Benjamini Species No. Proteins Involved in Biological Processes

Glycolysis 3.97 6.2 e-6 4.7 e-3 5 Triose-phosphate isomerase, fructose bisphosphate aldolase 
A, lactate dehydrogenase, chain A, phosphoglycerate 
kinase-1, pyruvate kinase

Response to ROS 2.87 1.3 e-5 4.8 e-3 5 Collagen α-1 (type I), peroxiredoxin-1, peroxiredoxin-6, 
superoxide dismutase 1 [Cu-Zn], superoxide dismutase 2 [Mn]

Organization of 1.78 2.5 e-4 3.9 e-2 7 F-actin “capping protein”, subunit α-1, colyfine-1, gelsolin, fructose
cytoskeleton bisphosphate aldolase A, transgelin, tropomyosin-4, vinculin
Extracellular matrix 1.75 1.8 e-3 7.8 e-2 6 Calreticulin, collagen α-1 (type I), collagen α-2 (type I), collagen 

α-1 (type IV), galectin-1, superoxide dismutase [Cu-Zn]
Cell homeostasis 1.65 1.6 e-4 9.3 e-3 8 Calreticulin, endoplasmin, ferritin, light chain, superoxide 

dismutase 1 [Cu-Zn], superoxide dismutase 2 [Mn], peroxiredoxin-1,
peroxiredoxin-6, fructose bisphosphate aldolase A

ROS: reactive oxygen species.

Figure 4. Type I collagen (Col-1, left panel) and vimentin (VIM, right panel) mRNA levels in control fibroblasts,
lcSSc-unaffected, and lcSSc-affected fibroblasts. Data are reported as mean fold change ± SD of 3 biological
replicates. * p < 0.05. ** p < 0.01. lcSSc (lSSc): limited cutaneous systemic sclerosis; CTR: controls.
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collagen mRNA as a predominant mechanism for high
collagen expression in fibrosis27. In fact, disruption of VIM
filaments using the drug β,βʹ-iminoditropionitrile reduces
type I collagen expression, primarily owing to decreased
stability of collagen mRNA27. The proteomics results related
to upregulation of collagen and VIM in affected lcSSc fibro -
blasts were also confirmed by immunohistochemistry on total
skin samples and by qRT-PCR analysis on fibroblasts.
Therefore, upregulation of collagen and VIM play a funda-
mental role in the onset and evolution of cutaneous SSc
changes: moreover, we believe that these findings will serve
as a rationale for targeting VIM and collagen in the devel-
opment of novel antifibrotic therapies in SSc. The upregu-
lation of VIM is followed in lcSSc-affected fibroblasts by
overexpression of calpain, gelsolin, β-tubulin, cofilin-1,
vinculin, and tropomyosin, all proteins involved in cyto -
skeletal organization28,29,30,31,32,33. This intracellular network
is responsible for the physical ECM attachment to the nucleus
through integrin receptors, originating a mechanosensory and
signaling apparatus34. In lcSSc-affected fibroblasts we found
no alteration of the number and thickness of actin filaments,
suggesting that the increased cell flexibility might be due to
the different structure of microtubules or to the cytoskeletal
reorganization35. 

Further, by the analysis of mechanical properties, it has
been demonstrated that SSc-affected fibroblasts are less rigid
compared to healthy ones, and so they become more sensitive
to mechanical stimuli inducing production of ECM compo-
nents and less sensitive to mechanical inhibitory stimuli36. In
fact, in vivo, fibroblast removal during the wound healing and
scarring processes is induced by apoptosis through inhibitory
mechanical stimulation, such as the contraction of the
collagen matrix mediated by intracellular integrin-dependent
signaling36. In this perspective, because SSc-affected fibro -
blasts are less rigid and so less sensitive to mechanical
inhibitory control, they become resistant to apoptosis35. This
study demonstrated altered abundance of proteins involved
not only in ECM production and myofibroblast contractility,
but also in oxidative stress response, as recently
reported37,38,39. SSc- affected fibroblasts produce high amounts
of reactive oxygen species (ROS), as a consequence of the
hyperactivation of the nicotinamide adenine dinucleotide
phosphate hydrogen (NADPH) oxidase enzymatic system40.
These high ROS levels induce fibroblast differentiation into
myofibroblast phenotype and consequently type I collagen
synthesis41. We found overexpression of peroxiredoxin-1
(PRDX1), PRDX6, and superoxide dismutase 1 (SODM 1)
in lcSSc-affected fibroblasts: these proteins represent the
mechanisms of antioxidant defense by fibroblasts to
counteract the increase of intracellular ROS, as evidenced in
literature41. On the contrary, the underexpressed levels of
SODM 2, found in lcSSc-affected fibroblasts, confirm the
hyperactivation of the NADPH oxidase system42. 

Our findings demonstrated that dermal fibroblasts in

affected lcSSc skin are in an activated myofibroblast state,
and contribute in an amplifying profibrotic loop leading to
SSc tissue remodeling. The proteomic investigation revealed
that fibroblasts from affected and unaffected skin of the same
patient with lcSSc act as 2 distinct entities within the same
body, and that lcSSc-unaffected fibroblasts and total skin
samples share similar behavior with fibroblasts from healthy
controls and total skin samples. Therefore, future treatment
strategies for established skin fibrosis in the limited form of
the disease should take into consideration the 2 distinct
fibroblast entities and should be addressed only against the
activated myofibroblast phenotype of the affected skin,
perhaps acting on the VIM-collagen system. 
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