Yoga in Sedentary Adults with Arthritis: Effects of a Randomized Controlled Pragmatic Trial Steffany Haaz Moonaz, Clifton O. Bingham III, Lawrence Wissow, and Susan J. Bartlett ABSTRACT. Objective. To evaluate the effect of Integral-based hatha yoga in sedentary people with arthritis. Methods. There were 75 sedentary adults aged 18+ years with rheumatoid arthritis (RA) or knee osteoarthritis randomly assigned to 8 weeks of yoga (two 60-min classes and 1 home practice/wk) or waitlist. Poses were modified for individual needs. The primary endpoint was physical health [Medical Outcomes Study Short Form-36 (SF-36) physical component summary (PCS)] adjusted for baseline; exploratory adjusted outcomes included fitness, mood, stress, self-efficacy, SF-36 health-related quality of life (HRQOL), and RA disease activity. In everyone completing yoga, we explored longterm effects at 9 months. **Results.** Participants were mostly female (96%), white (55%), and college-educated (51%), with a mean (SD) age of 52 years (12 yrs). Average disease duration was 9 years and 49% had RA. At 8 weeks, yoga was associated with significantly higher PCS (6.5, 95% CI 2.0–10.7), walking capacity (125 m, 95% CI 15–235), positive affect (5.2, 95% CI 1.4–8.9), and lower Center for Epidemiologic Studies Depression Scale (-3.0, 95% CI -4.8 -1.3). Significant improvements (p < 0.05) were evident in SF-36 role physical, pain, general health, vitality, and mental health scales. Balance, grip strength, and flexibility were similar between groups. Twenty-two out of 28 in the waitlist group completed yoga. Among all yoga participants, significant (p < 0.05) improvements were observed in mean PCS, flexibility, 6-min walk, and all psychological and most HRQOL domains at 8 weeks with Conclusion. Preliminary evidence suggests yoga may help sedentary individuals with arthritis safely increase physical activity, and improve physical and psychological health and HRQOL. Clinical Trials NCT00349869. (J Rheumatol First Release April 1 2015; doi:10.3899/jrheum.141129) most still evident 9 months later. Of 7 adverse events, none were associated with yoga. Key Indexing Terms: YOGA RHEUMATOID ARTHRITIS OSTEOARTHRITIS MOBILITY HRQOL For people with arthritis, physical activity is essential for optimal disease management and preserving mobility^{1,2}. Exercise helps maintain range of motion, joint stability, and muscle mass, while reducing pain and fatigue^{3,4,5}. The stress reduction associated with exercise can help individuals adaptively cope to living with a painful, chronic illness, and emerging evidence also suggests beneficial effects on systemic inflammation and immune function^{6,7}. However, despite the well-known benefits of physical activity, up to From the Maryland University of Integrative Health, Laurel; Department of Medicine, and School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada. Supported by the US National Center for Complementary and Alternative Medicine pilot project (Bartlett), US National Institutes of Health predoctoral award 1F31AT003362-01A1, and Arthritis Foundation S.H. Moonaz, PhD, Maryland University of Integrative Health; C.O. Bingham III, MD, Department of Medicine, Division of Rheumatology, Johns Hopkins University; L. Wissow, MD, MPH, School of Public Health, Johns Hopkins University; S.J. Bartlett, PhD, Associate Professor of Medicine, Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University. Address correspondence to Dr. S.J. Bartlett, Associate Professor of Medicine, McGill University (RVH), 687 Pine Ave., Ross 4.31, Montreal, Quebec, Canada. E-mail: susan.bartlett@mcgill.ca Accepted for publication January 27, 2015. 44% of people with arthritis report no leisure time physical activity⁸ and 76% are inadequately active⁹. Indeed, arthritis appears to be a major barrier to physical activity; among people with heart disease, those with arthritis were 60% more likely to be inactive¹⁰. Yoga may be well-suited for arthritis by combining physical activity with potent stress management techniques, including breathing, relaxation, and mindfulness¹¹. In 2012, 20 million US adults (nearly 1 in 10) practiced yoga to improve health and fitness, with 40% starting in the past year alone¹². The 2007 National Health Interview Survey listed yoga as the sixth most commonly used complementary health practice among adults¹³. In both healthy and clinical populations, the health benefits of yoga appear to be similar to other forms of exercise 14,15,16. The strongest evidence of benefit is for reducing pain [standardized mean difference (SMD) -0.74, 95% CI -0.97 - -0.52], pain-related disability (SMD -0.79,95% CI -1.02--0.56)¹⁷, and improving mood (SMD) -0.65, 95% CI -0.89 - -0.42)¹⁸. However, medical professionals may be concerned that yoga's emphasis on changing positions and flexibility could stress vulnerable joints affected by arthritis. Unfortunately, the evidence base is limited regarding yoga Personal non-commercial use only. The Journal of Rheumatology Copyright © 2015. All rights reserved. doctoral dissertation award (Moonaz). in arthritis. We summarized 10 peer-reviewed articles and abstracts of yoga and arthritis through 2010¹⁹; the existing studies, conducted in diverse populations around the world, were mostly of low quality (small samples, nonrandomized trials, heterogeneity of dose, methods, and outcomes) and precluded drawing conclusions. Other reviews of recent trials in rheumatic conditions have noted ongoing concerns with study quality, but the emerging evidence does suggest that yoga may improve arthritis symptoms (pain, stiffness, tenderness), function, and mood^{19,20,21,22}. Given its popularity and availability, well-controlled trials are needed to guide recommendations about yoga in arthritis^{15,20,21,22}. Hence, our goal was to contribute evidence about outcomes associated with initiating yoga practice in sedentary people with arthritis. An 8-week program was developed, emphasizing individualized adaptations and monitoring, to promote successful transition to home practice. We hypothesized that yoga would improve physical health, fitness, psychological function, health-related quality of life (HRQOL), and arthritis self-efficacy with no worsening of rheumatoid arthritis (RA) disease activity. #### MATERIALS AND METHODS Study design. A parallel-arms pragmatic 8-week randomized controlled trial (RCT) compared Integral-based hatha yoga and waitlist groups. Pragmatic RCT use rigorous methodology (randomization, blinding, allocation concealment) to reduce bias, but allow flexibility in intervention delivery and enhance external validity by testing existing programs in real-world settings and with less stringent inclusion criteria²³. Individuals were randomly assigned 1:1 to yoga or waitlist. This study was approved by the Johns Hopkins Institutional Review Board and registered with clinicaltrials.gov (NCT00349869). The study was originally for RA; after 31 patients were enrolled, additional funding was secured and the study was expanded to include knee osteoarthritis (OA). Although these diseases have different underlying mechanisms, both result in significant joint pain and disability, and community classes are likely to include people with both conditions. Additional secondary endpoints were added. We also explored the effects of yoga over time. After completing 8-week followup assessments, waitlisted participants were invited to join upcoming classes. We also completed followup assessments of these participants after 8 weeks of yoga, and of everyone who had completed yoga 9 months after classes had ended Participants. Eligibility criteria included (1) patients with RA, age 18–70 years; and patients with OA, 18+; (2) sedentary (physically active for 20 min < 3 times/week); and (3) diagnosed with RA, OA, or probable knee OA as indicated by a positive response to questions used in trials to identify knee OA²⁴. Exclusion criteria were (1) use of cane, walker, or wheelchair; (2) other inflammatory conditions; or (3) surgery within 6 months. For RA, medical clearance was required. Eligibility criteria were deliberately broad to ensure participants reflected typical people with arthritis living in the community. Enrollment occurred from June 2005 through July 2008, and ended when 75 participants had been enrolled. Recruitment and allocation. Participants were recruited from arthritis clinics, private practices, and using local flyers. The Maryland Arthritis Foundation Chapter also publicized the study in newsletters. Potential participants were screened by phone and eligible persons provided written consent and underwent baseline assessments. Rheumatologists and all assessors remained blinded to treatment assignment. Simple random assignment was done by a third party using a Web-based randomizer; allocation sequence was concealed from all study team members by using sequentially numbered, sealed opaque envelopes that were opened by the coordinator once baseline assessments were completed. Yoga classes began once 12–15 people were available (i.e., had been randomized after baseline and/or completed waitlist). Treatment arms. Yoga consisted of 60-min classes held twice weekly for 8 weeks at 2 hospital-affiliated fitness centers in Baltimore, Maryland, USA. The program was designed by a registered yoga therapist (SM) with input from the Johns Hopkins Arthritis Center faculty. Two yoga therapists with 10+ years of experience taught the classes. Yoga therapists have additional training to address the needs of people with diverse conditions/abilities. Each class began with questions/comments (5 min), breathing exercises and chanting (5 min), warm-up and moving sequence (surya namaskara, 15 min), and isometric poses (asanas, 20 min) to increase strength, flexibility, and balance. Classes ended with deep relaxation (sivasana, 10 min), a closing chant, and meditation (5 min). See Appendices for sample class and modifications. Poses included gentle forward bends, backbends, twists, balances, standing, sitting, and lying poses, and were modified for individuals at the discretion of the teacher and/or participant. Complexity of poses and intensity was standardized to allow gradual progression. Eight weeks was selected for the intervention because this provides sufficient time to introduce independent practice and is a common duration of introductory classes. Props included blocks, straps, blankets, and chairs. Participants were encouraged to try new skills, but to remain safe and avoid discomfort. Written instructions with pictures for home practice and selected readings describing potential benefits of yoga components (breathing, meditation, mindfulness) were provided weekly. Home practice evolved gradually to develop the skills and confidence for longterm adherence. Participants were asked to keep arthritis medications constant and were queried regularly by coordinators about any changes. The waitlist group received usual care for 8 weeks. They were asked to maintain current levels of physical activity and inform coordinators of changes in health or arthritis medications. After Week 8 assessments, they were invited to participate in upcoming classes. Dependent measures. Measures were obtained by blinded assessors at baseline, Week 8, and 9 months (yoga only) at the Johns Hopkins Bayview General Clinical Research Center. The primary endpoint was the Medical Outcomes Study Short Form-36 (SF-36) physical component summary (PCS) at Week 8. The SF-36 assesses 8 domains with higher scores representing better HRQOL. The PCS and mental component scores (MCS) differentially weight all scales using a t-score metric (mean 50 and SD 10). The PCS, which emphasizes physical function, fulfilling physical roles and bodily pain, is reliable (ICC 0.81) and responsive to change (SRM 0.61)^{25,26}. Exploratory endpoints included fitness, psychological function, and HRQOL. Using standardized protocols, flexibility was measured using a sit-and-reach box²⁷, balance with 1-leg stance (OLS; maximum 30 s), and strength with a hand dynamometer²⁸. For each measure, the best of 3 attempts was recorded. The 6-min walk²⁹ measured walking capacity. The SF-36 MCS provided an overall index of mental health. Depressive symptoms were assessed using the 11-item Center for Epidemiologic Studies–Depression Scale (CES-D)³⁰ that has a similar factor structure and properties as the original scale and is validated in arthritis³¹. The Positive and Negative Affect Scale (PANAS) assessed mood. The PANAS is reliable (r = 0.86 and 0.87 for PA and NA) and internally consistent (α = 0.86–0.90 for PA and 0.84–0.87 for NA)³². Stress was measured with the Perceived Stress Scale, which is reliable (r = 0.84–0.86) and correlates moderately with number and effect of life events (r = 0.33–0.49)³³. The Arthritis Self-efficacy Scale, which measures confidence to manage arthritis, is internally consistent (r = 0.94) and reliable (r > 0.85)³⁴. For RA, 28 tender and swollen joint counts were conducted by trained assessors, and participants completed the 100 mm patient's global assessment (PtGA) visual analog scale. Attendance was recorded at classes. Statistical analysis. Our study was designed and powered to detect an 8-point difference in PCS between groups. (The minimal clinically important difference for RA is 5.) A sample size of 30/group was sufficient to detect this difference, assuming an SD of 11 points, power of 80%, and significance of 5% Groups were compared on sociodemographic and SF-36 scores by arthritis type using Student t tests and chi-square tests. To assess the effect of missing data for variables added after the study began, we compared characteristics of the first 31 participants with the last 44, and also used multiple imputation and last observation carried forward (LOCF). The primary RCT analysis was ANCOVA by group with adjustment for baseline values (Model 1). In Model 2, we also added adjustment for age. Baseline covariates were chosen to improve the precision of estimates; age was explored given its associations with outcomes and because of chance imbalances between groups despite randomization³⁵ after first testing for homogeneity of regression slopes by treatment. Paired Student t tests also explored within-group differences after 8 weeks of yoga and 9 months later. RCT data were analyzed based on treatment assignment. Because this was an exploratory study, we did not control for multiple comparisons. All analyses were performed using IBM SPSS, version 21. #### RESULTS Of 103 people who contacted the research team, 19 were ineligible because of current physical activity (11), recent/planned surgery (5), and use of assistive devices (3); 9 declined because of time requirements (Figure 1). Thus, 75 participants were randomly assigned to yoga (n = 40) or waitlist (n = 35). Participants were mostly middle-aged (mean \pm SD, 52 \pm 12 yrs), female (96%), and white (55%), with 39% black. About half (51%) were college-educated and 49% had RA with an average duration of 9 \pm 9 years. Of the last 44 enrolled, 67% had OA; the mean age of those enrolled when recruitment was expanded was significantly higher than the original cohort, but did not differ on other sociodemographic or arthritis variables (data not shown). Yoga participants were significantly younger than waitlist, but did not otherwise differ (Table 1). Participants Figure 1. Flow of yoga and usual care participants throughout an 8-week randomized controlled trial and 9-month followup (yoga participants only). Table 1. Baseline characteristics of participants. Values are mean \pm SD or % unless otherwise specified. | Value | Yoga, $n = 40$ | Waitlist, n = 35 | |-----------------------|----------------|------------------| | Age, yrs | 49.2 ± 13.2 | 55.9 ± 8.9 | | Female, n (%) | 40 (100) | 32 (91) | | Race | | | | White | 57.5 | 51.4 | | Black | 37.5 | 40.0 | | Other | 5.0 | 8.6 | | College graduate | 47.5 | 55.9 | | RA diagnosis | 55 | 43 | | Disease duration, yrs | 9.9 ± 8.7 | 8.6 ± 9.4 | | | | | RA: rheumatoid arthritis. with RA were significantly younger and had significantly lower SF-36 MCS, general health, social function, and mental health scores (Table 2). Among 40 yoga participants, 7 withdrew (see Figure 1 for reasons) between baseline and the start of classes, and 8 withdrew during the intervention. Thus, Week 8 data were available for 25 participants. Most who completed yoga (22, 79%) attended at least 12/16 classes. Of 35 people in the waitlist group, 7 withdrew; Week 8 data were available for 28 people. Study completers did not differ significantly from withdrawals by age, sex, education, diagnosis, disease duration, pain, or physical function, but were more likely to be minorities (OR 4.3, 95% CI 1.5–12.4). The most common reasons for withdrawal were life events and scheduling. Physical health and fitness. At Week 8, in adjusted analyses (Model 1), the mean PCS score for yoga was 6.5 points higher than waitlist (p < 0.001; Table 3); this 0.7 SD difference is both statistically and clinically meaningful and persisted with adjustment for age (Model 2). Walking capacity was also significantly higher for yoga (125 m); there was a trend (p = 0.056) for sit-and-reach scores to also being higher. OLS and grip strength did not differ between groups. In Model 2, with additional adjustment for age, differences in flexibility reached statistical significance; however, 6-min walk, grip strength, and balance were not significantly different between groups. Results were similar using LOCF (data not shown). Psychological function. At Week 8, with adjustment for baseline, the yoga group reported significantly fewer depressive symptoms (CES-D) and higher positive affect (PANAS). However, groups did not differ on SF-36 MCS, negative affect, perceived stress, or arthritis self-efficacy. Results were unchanged with adjustment for age. HRQOL. At Week 8, adjusted analyses showed yoga participants reported significantly less impairment on SF-36 role physical, body pain, general health, vitality, and mental health scales, with trends (p < 0.08) evident in physical function and role emotional. Within groups, yoga improved significantly on all SF-36 scales, except role emotional, while scores were essentially unchanged in waitlist. Significant differences were evident in the same SF-36 scales, except general health with further adjustment for age. In 25 participants with RA, we also explored changes in joint counts and PtGA scores (Table 4). Swollen and tender joint counts decreased and PtGA scores improved in both groups, and were not statistically different in baseline-adjusted analyses between groups at Week 8. *Yoga group.* At Week 8, 22 of 28 waitlist participants (79%) began yoga. Characteristics were similar between waitlist participants who did and did not start yoga (data not shown). Table 2. Participant characteristics by arthritis type. Values are the mean ± SD or n (%) unless otherwise indicated. | Variable | RA, n = 37 | OA, n = 38 | p | |------------------------|-----------------|-----------------|---------| | Age, yrs | 46.6 ± 12.1 | 57.9 ± 8.7 | < 0.001 | | Female | 36 (97) | 36 (95) | 0.572 | | College graduate | 20 (54) | 19 (50) | 0.831 | | Minority | 14 (38) | 20 (53) | 0.198 | | Disease duration, yrs | 8.5 ± 7.6 | 10.1 ± 10.2 | 0.431 | | SF-36 component scores | | | | | PCS | 34.1 ± 10.9 | 35.5 ± 9.8 | 0.568 | | MCS | 48.6 ± 12.4 | 54.4 ± 9.9 | 0.032 | | SF-36 scales | | | | | Physical function | 57.7 ± 24.6 | 49.6 ± 21.5 | 0.142 | | Role physical | 34.1 ± 38.4 | 43.4 ± 37.5 | 0.305 | | Bodily pain | 48.0 ± 19.1 | 53.7 ± 17.4 | 0.193 | | General health | 46.7 ± 24.3 | 66.7 ± 18.2 | 0.000 | | Vitality | 45.6 ± 21.2 | 51.1 ± 20.2 | 0.272 | | Social function | 62.9 ± 24.7 | 79.6 ± 22.6 | 0.004 | | Role emotional | 68.7 ± 42.4 | 71.1 ± 40.4 | 0.811 | | Mental health | 69.7 ± 21.1 | 80.1 ± 13.1 | 0.014 | RA: rheumatoid arthritis; OA: osteoarthritis; SF-36: Medical Outcomes Study Short Form-36; PCS: physical component summary; MCS: mental component summary. Table 3. Physical health, fitness, psychological function, and HRQOL by group at baseline and Week 8 of RCT. Values are the mean ± SD unless otherwise specified. | Variable | Yoga, n = 25 [^] | | | Waitlist, $n = 28^{\circ}$ | | | Week 8 Difference, mean (95% CI) | | | |------------------------|---------------------------|-----------------|---------------|----------------------------|-----------------|---------------|----------------------------------|------------------|-----------------------| | | Week 0 | Week 8 | p^{\dagger} | Week 0 | Week 8 | p^{\dagger} | Unadjusted | Model 1≠ | Model 2 ^{††} | | SF-36 physical | | | | | | | | | | | component | 36.3 ± 10.4 | 43.4 ± 9.0 | 0.002 | 33.9 ± 10.5 | 35.3 ± 11.0 | 0.345 | 8.1 (2.5-13.7) | 6.5 (2.0-10.7) | 6.5 (1.9-11.0) | | Fitness | | | | | | | | | | | Sit and reach, cm | -2.8 ± 5.2 | 0.1 ± 5.1 | 0.000 | -5.6 ± 6.2 | -4.2 ± 6.2 | 0.260 | 4.5 (1.0-8.1) | 2.7 (-0.1-5.5) | 3.0 (0.2-5.9) | | One-leg stance*, s | 25.6 ± 9.5 | 26.4 ± 9.1 | 0.464 | 19.8 ± 10.2 | 20.5 ± 10.6 | 0.656 | 5.8 (-0.5-12.2) | 2.0 (-2.4-6.4) | 1.9 (-2.6-6.4) | | Grip strength, kg | 25.5 ± 8.0 | 25.8 ± 8.2 | 0.815 | 24.3 ± 9.4 | 24.5 ± 10.1 | 0.643 | 1.2 (-4.7-7.1) | -0.1 (-2.5-2.3) | -0.2 (-2.7-2.4) | | 6-min walk, m | 1450 ± 248 | 1588 ± 243 | 0.000 | 1508 ± 337 | 1494 ± 302 | 0.782 | 94 (-58-247) | 125 (15-235) | 101 (-14-217) | | Psychological function | on | | | | | | | | | | SF-36 mental | | | | | | | | | | | component | 51.1 ± 13.0 | 55.4 ± 8.1 | 0.074 | 52.4 ± 9.7 | 51.6 ± 12.1 | 0.592 | 3.8 (-1.9-9.4) | 4.1 (-0.4-8.7) | 3.0 (-1.7-7.7) | | CES-D | 6.7 ± 5.5 | 3.7 ± 3.0 | 0.003 | 8.4 ± 6.4 | 7.8 ± 6.0 | 0.176 | -3.8 (-6.51.1) | -3.0 (-4.81.3) | -2.6 (-4.40.7) | | PANAS | | | | | | | | | | | Positive affect* | 20.6 ± 8.3 | 27.1 ± 5.8 | 0.001 | 25.4 ± 5.8 | 24.6 ± 8.3 | 0.549 | 2.2 (-1.9-6.3) | 5.2 (1.4-8.9) | 5.3 (1.4-9.2) | | Negative affect | 7.2 ± 6.5 | 5.5 ± 6.1 | 0.190 | 5.7 ± 5.2 | 6.6 ± 5.8 | 0.318 | -0.5 (-4.0-2.9) | -2.0 (-4.7-0.7) | -1.0 (-3.7-1.8) | | Perceived stress | | | | | | | | | | | scale | 15.5 ± 5.0 | 13.1 ± 5.6 | 0.131 | 14.6 ± 21.0 | 15.0 ± 21.0 | 0.612 | -1.6 (-4.9-1.7) | -2.4 (-5.4-0.6) | -2.2 (-5.3-1.0) | | Arthritis self-effica | ıcy | | | | | | | | | | scale | 59.4 ± 8.9 | 64.8 ± 13.1 | 0.046 | 55.5 ± 15.8 | 58.8 ± 16.4 | 0.287 | 5.5 (-4.5-15.4) | 3.2 (-5.5-12.0) | 4.3 (-4.4-13.1) | | SF-36 | | | | | | | | | | | Physical function | 59.0 ± 19.4 | 68.8 ± 22.9 | 0.024 | 53.4 ± 24.7 | 55.0 ± 29.3 | 0.573 | 13.8 (-0.8-28.4) | 8.8 (-1.1-18.7) | 8.4 (-2.0-18.8) | | Role physical | 36.0 ± 36.9 | 78.0 ± 34.9 | 0.000 | 41.1 ± 38.0 | 45.5 ± 41.4 | 0.485 | 32.5 (11.2-53.7) | 34.9 (15.7-54.0) | 34.6 (14.2-54.9) | | Bodily pain | 52.2 ± 18.9 | 63.1 ± 20.6 | 0.015 | 49.3 ± 17.8 | 50.0 ± 21.1 | 0.790 | 13.1 (2.5-23.7) | 11.4 (2.6-20.2) | 9.6 (0.5-18.7) | | General health | 61.3 ± 20.6 | 68.9 ± 17.3 | 0.012 | 52.6 ± 24.4 | 55.0 ± 22.7 | 0.394 | 13.8 (2.8-24.9) | 7.7 (0.5–15.0) | 6.5 (-1.5-14.4) | | Vitality | 49.8 ± 21.2 | 63.4 ± 19.3 | 0.002 | 50.9 ± 20.3 | 52.7 ± 18.9 | 0.554 | 10.7 (0.2-21.3) | 11.3 (2.9-19.8) | 9.2 (0.4–17.9) | | Social function | 72.0 ± 24.5 | 83.0 ± 21.0 | 0.052 | 68.3 ± 26.0 | 72.3 ± 30.1 | 0.142 | 10.7 (-3.8-25.2) | 8.1 (-2.8-19.1) | 8.3 (-3.3-20.0) | | Role emotional | 73.3 ± 40.8 | 89.3 ± 26.7 | 0.110 | 71.4 ± 41.3 | 72.6 ± 40.6 | 0.861 | 16.7 (-2.1-35.5) | 16.1 (-1.8-33.9) | 12.3 (-6.3-30.9) | | Mental health | 72.8 ± 17.6 | 81.9 ± 13.1 | 0.013 | 77.9 ± 17.1 | 74.6 ± 21.1 | 0.140 | 7.3 (-2.5-17.0) | 10.8 (3.4–18.3) | 8.9 (1.4-16.3) | Values significantly different (p < 0.05) from baseline in unadjusted and adjusted models are shown in bold face. ^ n = 19 and $^{\infty}$ n = 24 for hand grip, sit and reach, one-leg stance, perceived stress, and arthritis self-efficacy outcomes. † p value within groups from baseline. * Model 1 adjusted for baseline value. †† Model 2 adjusted for baseline value and age. * Week 0 scores significantly different (p < 0.05) between groups at baseline. HRQOL: health-related quality of life; RCT: randomized controlled trial; SF-36: Medical Outcomes Study Short Form-36; CES-D: Center for Epidemiologic Studies—Depression Scale; PANAS: Positive and Negative Affect Scale. Table 4. Change in tender and swollen joints and patient's global assessment (PtGA) scores in RCT participants with RA. Values are the mean \pm SD unless otherwise specified. | Variable | Yoga | , n = 11 | Difference (95% CI) Waitlist, n = 14 | | Difference (95% CI) | Week 8 Between Group
Differences, mean (95% CI) | | | |---|---------------------------------|----------------------------------|--------------------------------------|----------------------------------|----------------------------------|--|------------------------------------|-----------------------------------| | | Week 0 | Week 8 | | Week 0 | Week 8 | | Unadjusted | Model 1* | | Tender joints,
28-count
Swollen joints, | 10.4 ± 7.5 | 4.5 ± 6.9 | -5.9 (-9.82.0) | 8.1 ± 8.3 | 3.5 ± 5.8 | -4.6 (-9.4-0.3) | 1.0 (-4.3-6.2) | 0.1 (-4.7-4.8) | | 28-count
PtGA | 8.3 ± 4.6
36.8 ± 8.0 | 4.1 ± 4.8
19.4 ± 14.5 | -4.2 (-7.90.5)
-17.4 (-33.21.6) | 7.7 ± 7.3
37.2 ± 24.0 | 3.6 ± 5.2
12.7 ± 12.5 | -4.1 (-8.5-0.2)
-24.5 (-39.99.1) | 0.5 (-3.7-4.7)
0.1 (-16.5-16.7) | 0.4 (-3.7-4.4)
6.8 (-3.4-17.3) | Week 8 scores significantly different (p < 0.05) from baseline are shown in bold face. Model 1: ANCOVA adjusted for baseline value. RCT: randomized controlled trial; RA: rheumatoid arthritis. Overall, of 55 who began yoga, 44 (80%) completed Week 8 testing. PCS, all fitness (except OLS), psychological, and SF-36 measures (except role emotional) improved significantly (Table 5). Followup data were available on 37 participants (67%) 9 months after completing yoga. Improvements were still evident in PCS, sit-and-reach, 6-min walk, CES-D, positive and negative affects, perceived stress, and SF-36 physical function, role physical, bodily pain, and vitality scales. Adverse events. No adverse events were specifically associated with yoga. The 7 events (1 each) reported to the Internal Review Board for the yoga group (not attributed to Table 5. Physical health, fitness, psychological function, and HRQOL in all yoga participants at Week 0, Week 8, and 9 months. Values are the mean ± SD unless otherwise specified. | Variable | Week $0, n = 55$ | Week $8, n = 40$ | Mean Difference (95% CI) | 9 Mos, $n = 37$ | Mean Difference From
Baseline (95% CI) | |------------------------|------------------|------------------|---------------------------------|-----------------|-------------------------------------------| | SF-36 PCS | 34.8 ± 10.4 | 42.9 ± 9.1 | 7.4 (4.4–10.4) | 42.5 ± 10.5 | 5.3 (2.8–7.9) | | Fitness | | | | | | | Sit and reach, cm | -3.9 ± 4.1 | -2.2 ± 6.5 | 2.3 (0.7–3.9) | 1.7 ± 4.9 | 5.6 (2.9-8.3) | | One-leg stance, s | 22.6 ± 10.1 | 23.5 ± 10.0 | 0.9 (-1.5-3.3) | 25.9 ± 7.5 | 1.0 (-1.7-3.7) | | Hand grip, kg | 25.1 ± 8.7 | 25.5 ± 9.5 | 0.2 (-1.2-1.5) | 26.0 ± 9.7 | 0.2 (-2.0-2.3) | | 6-min walk, m | 1468 ± 314 | 1566 ± 275 | 77 (5–150) | 1588 ± 252 | 115 (5–225) | | Psychological function | | | | | | | SF-36 MCS | 52.0 ± 12.3 | 55.8 ± 8.0 | 3.3 (0.2-6.4) | 54.0 ± 10.1 | 0.8 (-2.7-4.4) | | CES-D | 7.5 ± 5.8 | 4.4 ± 3.8 | -2.6 (-4.2 1.0) | 5.0 ± 4.5 | -1.9 (-3.1-0.7) | | Positive affect | 21.2 ± 7.7 | 27.9 ± 7.1 | 5.7 (3.1, 8.3) | 27.2 ± 4.8 | 5.0 (2.3–7.7) | | Negative affect | 5.9 ± 5.1 | 4.4 ± 4.8 | -2.2 (-3.8 0.6) | 4.7 ± 5.4 | -1.9 (-3.40.3) | | Perceived stress | 15.4 ± 4.4 | 12.0 ± 4.8 | -3.0 (-5.30.7) | 12.2 ± 3.5 | -4.2 (-6.71.7) | | Self-efficacy | 58.9 ± 13.4 | 66.8 ± 12.3 | 4.8 (3.6–9.3) | 65.1 ± 13.3 | 2.3 (-2.5-7.1) | | SF-36 | | | | | | | Physical function | 54.4 ± 23.2 | 67.1 ± 23.9 | 10.3 (4.2–16.3) | 66.3 ± 22.0 | 7.5 (1.1–13.9) | | Role physical | 36.4 ± 39.3 | 76.3 ± 34.9 | 38.1 (24.5-51.8) | 72.8 ± 38.6 | 27.9 (14.9-41.0) | | Pain | 50.5 ± 19.5 | 63.3 ± 17.2 | 11.9 (5.5–18.2) | 61.8 ± 19.5 | 7.0 (0.5–13.5) | | General health | 56.7 ± 21.6 | 67.6 ± 17.9 | 8.3 (4.2–12.3) | 65.5 ± 18.4 | 4.1 (-0.4-8.6) | | Vitality | 49.4 ± 19.4 | 64.2 ± 18.1 | 12.6 (7.0–18.2) | 60.3 ± 18.7 | 6.5 (0.9–12.0) | | Social function | 71.6 ± 27.8 | 85.9 ± 19.6 | 12.5 (4.0–21.0) | 84.2 ± 21.6 | 5.5 (-3.6-14.6) | | Role emotional | 74.5 ± 38.5 | 86.7 ± 29.0 | 10.0 (-2.6-22.6) | 81.4 ± 34.0 | 3.9 (-8.8-16.7) | | Mental health | 73.9 ± 19.7 | 82.2 ± 14.7 | 8.3 (3.5–13.1) | 79.4 ± 16.1 | 4.0 (-1.5-9.5) | Values significantly different (p < 0.05) from baseline are shown in bold face. HRQOL: health-related quality of life; SF-36: Medical Outcomes Study Short Form-36; PCS: physical component summary; MCS: mental component summary; CES-D: Center for Epidemiologic Studies–Depression Scale. yoga) included bruising (workplace accident), ovarian cancer recurrence, bladder cancer, tendinitis, hyperthyroidism, allergic reaction, and new RA diagnosis (study end). No adverse events occurred in the waitlist group. ### DISCUSSION To date, this is the largest RCT of OA and RA, and to our knowledge the first to assess physical health and fitness using self-reported and performance measures along with psychological function and HRQOL. This is only the second study in arthritis (of 20 published to date) to include safety data. As compared to waitlist, yoga was associated with substantial improvements in physical and general health perceptions, physical roles, walking, pain, energy, and mood. Regular yoga practice was not associated with worsening joint symptoms or adverse events. Indeed, in RA, swollen and tender joint counts decreased significantly with yoga, though a similar trend was evident in the waitlist. Although 24% dropped out of yoga, persistence was still higher than in many exercise programs³⁶, with most attending the majority of classes. The most common reason people withdrew was because of time/schedule conflicts. Other studies^{37,38} have also reported higher rates of adherence to yoga than studies with clinical populations where < 50% continue exercising by 3 months³⁹. Reducing inactivity is an important public health challenge, especially in arthritis, where only 1 in 4 are meeting activity guidelines⁹. Notably, 80% of the waitlist group opted to take yoga. Assessments 9 months later indicated the durability of most improvements. At Week 8, the 6.5-point difference between groups in PCS indicated important improvements in health. PCS scores reflect physical function, role physical (work and daily activity impairments because of physical health), pain, and energy. Indeed, in the yoga group, 16/44 (36%) improved 1 category or more on the SF-36 self-rating of health. We noted a trend toward improved physical function with yoga at Week 8, as have others^{37,40,41,42}, though not all⁴³. When we pooled data from all yoga completers, there were significant improvements in all HRQOL scales except role emotional, which was already close to population norms at baseline. We hypothesized that yoga would lead to improved flexibility, balance, and strength. Flexibility, which has not been previously evaluated in arthritis, improved with practice, although differences were not statistically significant (p = 0.056). Because loss of joint mobility is common in arthritis, preserving range of motion is important for maintaining mobility. However, yoga was not associated with improved balance, in contrast to the findings by others⁴⁴, perhaps because baseline values were already high. For example, 45% of participants scored at maximum levels (30 s) at baseline; among those with scores < 30 s, 54% improved with yoga. Tai chi also may enhance balance and reduce the risk of falls in arthritis⁴⁵. Future yoga studies should further evaluate flexibility and balance. We also did not find improvements in grip strength; Garfinkel, *et al* also found no change in grip strength with yoga in hand OA⁴⁶, although this has been reported by others in RA^{47,48}. However, grip strength assesses upper limb strength and may not adequately characterize muscle strength of the entire body. Yoga targets many muscle groups, and many poses do not directly involve the upper limbs. Pain, one of the most widely studied outcomes in yoga, improved significantly with yoga. Some 37,41,42,44,46 though not all 42,43,49 have reported similar results. Yoga was associated with positive affect and fewer depressive symptoms, findings also reported by some 37,40,44 , though not all 42,50 . In contrast to Evans, *et al* 37 , self-efficacy was not significantly different between groups, perhaps because both groups improved. In RA, significant reductions in joint counts were observed in both groups. One other study reported reductions in joint counts⁴³; another found no change in C-reactive protein (CRP) with 1 week of yoga at a residential camp⁴⁹. Together, these results suggest that yoga is unlikely to worsen disease activity. Sensitive measures, such as erythrocyte sedimentation rate, CRP, and interleukin 6, should be included in larger samples to evaluate the effect of yoga on systemic inflammation and immune reactivity. A strength of our study was the controlled pragmatic study design. Randomization, blinding, concealment of treatment allocation, and use of flexible standardized protocols to guide progression increase confidence in our results. Including typical sedentary participants with RA and OA, evaluating classes specifically designed to promote independent practice, offering the program in community settings, and evaluating the effect on HRQOL increase the applicability and relevance of results. Although our program was developed by a multidisciplinary team (rheumatologists, psychologists, public health, and exercise scientists) and tailored for arthritis, we used common yoga poses and practices and a class length found in many introductory classes. Participants were taught to assess how they felt at each class and to adjust their practice accordingly. We also explored clinician-measured (fitness and clinical signs) and patient-centered (mood, stress, self-efficacy, symptoms) outcomes to gain insight into how yoga may affect health and well-being. Data collected on waitlist participants who later completed yoga supported the RCT findings, and many trends became statistically and clinically significant. In focus groups on RA stiffness that we conducted after five years, several participants commented that yoga had played a pivotal role in changing how they viewed their functioning, capabilities, and attitudes toward living with RA; they credited yoga with helping them maintain a more active lifestyle. Although our study provides preliminary evidence that yoga appears to be acceptable to people with arthritis and does not aggravate joint disease, caution is warranted. A longer period of practice might produce further gains, though potentially with an increased risk of injury. Despite improvements after 8 weeks, significant impairments were still evident in physical function, role physical, pain, general health, and energy. Classes were taught by experienced yoga therapists in community hospital fitness settings. Because classes began once ~15 participants were available, the length of time between baseline assessment and the start of yoga classes varied. We did not stratify by diagnosis, randomization did not result in group equivalence in age, and our sensitivity analyses used methods assuming data were missing at random, which we did not confirm. We cannot determine whether some yoga elements had more benefit than others, or the extent to which the yoga group experienced greater social support. Research to replicate and extend these findings across settings, instructors, and in diverse groups is ongoing. Inclusion of biomarkers may provide additional insight. Larger trials with active comparators are needed to establish the relative efficacy of yoga versus traditional exercise and other mind-body practices. Our study contributes preliminary new evidence that sedentary individuals with RA and knee OA can safely learn to practice yoga in classes led by trained instructors who provide close supervision and individual attention. Eight weeks of classes and home practice was associated with clinically significant improvements in physical and mental health, fitness, psychological function, and HRQOL, with no adverse outcomes. Additional studies with active comparison groups in diverse settings and other forms of arthritis are necessary to support these findings and establish the benefits of yoga in relation to traditional exercise in people with arthritis. ## **ACKNOWLEDGMENT** We acknowledge the assistance of Heather Keller, Devin Rand-Giovannetti, Chethan Kasargod, Isabel Roth, Michelle Jones, Uzma Haque, Jon Giles, and Joan Bathon. # REFERENCES - American College of Rheumatology Subcommittee on Osteoarthritis Guidelines. Recommendations for the medical management of osteoarthritis of the hip and knee: 2000 update. Arthritis Rheum 2000:43:1905-15. - American College of Rheumatology Subcommittee on Rheumatoid Arthritis Guidelines. Guidelines for the management of rheumatoid arthritis: 2002 update. Arthritis Rheum 2002;46:328-46. - Fransen M, McConnell S. Exercise for osteoarthritis of the knee. Cochrane Database Syst Rev 2008;4: CD004376. - Juhl C, Christensen R, Roos EM, Zhang W, Lund H. Impact of exercise type and dose on pain and disability in knee osteoarthritis: a systematic review and meta-regression analysis of randomized controlled trials. Arthritis Rheumatol 2014;66:622-36. - Cramp F, Hewlett S, Almeida C, Kirwan JR, Choy EH, Chalder T, et al. Non-pharmacological interventions for fatigue in rheumatoid arthritis. Cochrane Database Syst Rev 2013;8:CD008322. - Hurley MV, Mitchell HL, Walsh N. In osteoarthritis, the psychosocial benefits of exercise are as important as physiological improvements. Exerc Sport Sci Rev 2003;31:138-43. - Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol 2005;98:1154-62. - Centers for Disease Control and Prevention (CDC). State-specific prevalence of no leisure-time physical activity among adults with and without doctor-diagnosed arthritis—United States, 2009. MMWR Morb Mortal Wkly Rep 2011;60:1641-5. - Hootman JM, Macera CA, Ham SA, Helmick CG, Sniezek JE. Physical activity levels among the general US adult population and in adults with and without arthritis. Arthritis Rheum 2003;49:129-35. - Centers for Disease Control and Prevention (CDC). Arthritis as a potential barrier to physical activity among adults with heart disease—United States, 2005 and 2007. MMWR Morb Mortal Wkly Rep 2009;58:165-9. - Sharma M. Yoga as an alternative and complementary approach for stress management: a systematic review. J Evid Based Complementary Altern Med 2014;19:59-67. - Yoga in America 2012. [Internet. Access February 24, 2015.] Available from: www.yogajournal.com/article/press-releases/ yoga-journal-releases-2012-yoga-in-america-market-study - Barnes PM, Bloom B, Nahin RL. Complementary and alternative medicine use among adults and children: United States, 2007. Natl Health Stat Report 2008;12:1-23. - Raub JA. Psychophysiologic effects of Hatha Yoga on musculoskeletal and cardiopulmonary function: a literature review. J Altern Complement Med 2002;8:797-812. - Bartlett SJ, Moonaz SH, Mill C, Bernatsky S, Bingham CO 3rd. Yoga in rheumatic diseases. Curr Rheumatol Rep 2013;15:387. - Patel NK, Newstead AH, Ferrer RL. The effects of yoga on physical functioning and health related quality of life in older adults: a systematic review and meta-analysis. J Altern Complement Med 2012;18:902-17. - McCall MC, Ward A, Roberts NW, Heneghan C. Overview of systematic reviews: yoga as a therapeutic intervention for adults with acute and chronic health conditions. Evid Based Complement Alternat Med 2013;2013:945895. - Büssing A, Ostermann T, Lüdtke R, Michalsen A. Effects of yoga interventions on pain and pain-associated disability: a meta-analysis. J Pain 2012;13:1-9. - Haaz S, Bartlett SJ. Yoga for arthritis: a scoping review. Rheum Dis Clin North Am 2011;37:33-46. - Uhlig T. Tai chi and yoga as complementary therapies in rheumatologic conditions. Best Pract Res Clin Rheumatol 2012;26:387-98. - Sharma M. Yoga as an alternative and complementary approach for arthritis: a systematic review. J Evid Based Complementary Altern Med 2014;19:51-8. - Cramer H, Lauche R, Langhorst J, Dobos G. Yoga for rheumatic diseases: a systematic review. Rheumatology 2013;52:2025-30. - Treweek S, Zwarenstein M. Making trials matter: pragmatic and explanatory trials and the problem of applicability. Trials 2009;10:37. - 24. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum 1986;29:1039-49. - Ware JE Jr, Kosinski M, Keller SD. SF-36 physical & mental health summary scales: a user's manual. Boston: The Health Institute, New England Medical Center; 1994. - Hurst NP, Ruta DA, Kind P. Comparison of the MOS short form-12 (SF12) health status questionnaire with the SF36 in patients with rheumatoid arthritis. Br J Rheumatol 1998;37:862-9. - Wells KF, Dillon EK. The sit and reach: a test of back and leg flexibility. Res Q Exerc Sport 1952;23:115-8. - 28. Mathiowetz V, Weber K, Volland G, Kashman N. Reliability and - validity of grip and pinch strength evaluations. J Hand Surg Am 1984:9:222-6. - ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002;166:111-7. - Kohout FJ, Berkman LF, Evans DA, Cornoni-Huntley J. Two shorter forms of the CES-D (Center for Epidemiological Studies Depression) depression symptoms index. J Aging Health 1993;5:179-93. - Rhee SH, Petroski GF, Parker JC, Smarr KL, Wright GE, Multon KD, et al. A confirmatory factor analysis of the Center for Epidemiologic Studies Depression Scale in rheumatoid arthritis patients: additional evidence for a four-factor model. Arthritis Care Res 1999;12:392-400. - Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol 1988;54:1063-70. - Cohen S, Williamson G. Perceived stress in a probability sample of the United States. In: Spacapam S, Oskamp S, eds. The social psychology of health: the Claremont Symposium on applied social psychology. Newbury Park: SAGE Publications Inc.; 1988:31-67. - 34. Lorig K, Chastain RL, Ung E, Shoor S, Holman HR. Development and evaluation of a scale to measure perceived self-efficacy in people with arthritis. Arthritis Rheum 1989;32:37-44. - Yu LM, Chan AW, Hopewell S, Deeks JJ, Altman DG. Reporting on covariate adjustment in randomised controlled trials before and after revision of the 2001 CONSORT statement: a literature review. Trials 2010;11:59. - Dishman R. Determinants of participation in physical activity. In: Bouchard C, Shepard R, Stephens T, Sutton J, McPherson B, eds. Exercise, fitness, and health. Champaign: Human Kinetics; 1990:75-102. - Evans S, Moieni M, Lung K, Tsao J, Sternlieb B, Taylor M, et al. Impact of iyengar yoga on quality of life in young women with rheumatoid arthritis. Clin J Pain 2013;29:988-97. - Flegal KE, Kishiyama S, Zajdel D, Haas M, Oken BS. Adherence to yoga and exercise interventions in a 6-month clinical trial. BMC Complement Altern Med 2007;7:37. - Woodard CM, Berry MJ. Enhancing adherence to prescribed exercise: structured behavioral interventions in clinical exercise programs. J Cardiopulm Rehabil 2001;21:201-9. - Kolasinski SL, Garfinkel M, Tsai AG, Matz W, Van Dyke A, Schumacher HR. Iyengar yoga for treating symptoms of osteoarthritis of the knees: a pilot study. J Altern Complement Med 2005;11:689-93. - Ebnezar J, Nagarathna R, Yogitha B, Nagendra HR. Effects of an integrated approach of hatha yoga therapy on functional disability, pain, and flexibility in osteoarthritis of the knee joint: a randomized controlled study. J Altern Complement Med 2012;18:463-72. - 42. Park J, McCaffrey R. Chair yoga: benefits for community-dwelling older adults with osteoarthritis. J Gerontol Nurs 2012;38:12-22. - Badsha H, Chhabra V, Leibman C, Mofti A, Kong KO. The benefits of yoga for rheumatoid arthritis: results of a preliminary, structured 8-week program. Rheumatol Int 2009;29:1417-21. - 44. Bosch PR, Traustadóttir T, Howard P, Matt KS. Functional and physiological effects of yoga in women with rheumatoid arthritis: a pilot study. Altern Ther Health Med 2009;15:24-31. - Logghe IH, Verhagen AP, Rademaker AC, Bierma-Zeinstra SM, van Rossum E, Faber MJ, et al. The effects of Tai Chi on fall prevention, fear of falling and balance in older people: a meta-analysis. Prev Med 2010;51:222-7. - Garfinkel MS, Schumacher HR Jr, Husain A, Levy M, Reshetar RA. Evaluation of a yoga based regimen for treatment of osteoarthritis of the hands. J Rheumatol 1994;21:2341-3. - 47. Haslock I, Monro R, Nagarathna R, Nagendra HR, Raghuram NV. - Measuring the effects of yoga in rheumatoid arthritis. Br J Rheumatol 1994;33:787-8. - 48. Dash M, Telles S. Improvement in hand grip strength in normal volunteers and rheumatoid arthritis patients following yoga training. Indian J Physiol Pharmacol 2001;45:355-60. - 49. Telles S, Naveen KV, Gaur V, Balkrishna A. Effect of one week of yoga on function and severity in rheumatoid arthritis. BMC Res Notes 2011;4:118. - 50. Taibi DM, Vitiello MV. A pilot study of gentle yoga for sleep disturbance in women with osteoarthritis. Sleep Med 2011;12:512-7. ### APPENDIX 1. Sample class outline. Questions/comments about article: 5 min Warm-up: 10 min Body scan and focus 3 Oms Upper body stretches Staff with leg lifts Inverted plank Table and cat-cow Downward dog Walk to forward fold, hold opposite elbows Roll up to mountain for body scan Sun salutations (both sides, take notes for home practice): 20 min Standing asanas: 5 min Balances - tree, king dancer Standing poses - warrior II, triangle Floor asanas: 10 min Lying extended leg pose Lying spinal twist Head to knee Spinal twist Yogic seal Sivasana: 10 min Tense and release Progressive body scan Breath and mind relaxation Closing: 5 min Introduce awareness and movement Side lying Return to cross-legged Chant Meditation HOMEWORK: 10-min timed meditation, 4 sun salutations (can be broken up) APPENDIX 2. Sample modification of yoga poses for people with arthritis. | Joint | Limitation | Example | Modification | |----------|------------------------------|-------------------|---------------------------------------| | Knee | Extreme flexion | King dancer | Use a strap to reduce angle | | | Weight bearing | Table | Place blanket under knees | | Hip | External rotation to edge of | | | | • | range of motion | Easy pose | Blocks under knees | | | Flexion beyond 90° | Extended leg pose | Use strap around foot to reduce angle | | Wrist | Flexion with weight bearing | Downward dog | Place wedge under palms | | Hand | Flattened palms | Prayer position | Rest hands on heart | | Shoulder | Arms above shoulder height | Chair pose | Arms extended forward | | Ankle | Flexion with weight bearing | Warrior I | Wedge under heel | | Foot | Forced arch | Low lunge | Rest top of the foot on the floor |