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Lack of Association among Peptidyl Arginine
Deiminase Type 4 Autoantibodies, PADI4
Polymorphisms, and Clinical Characteristics in
Rheumatoid Arthritis 
Kari Guderud, Marthe Thoresen Mæhlen, Gry Beate Namløs Nordang, Marte Kathrine Viken,
Bettina Kulle Andreassen, Øyvind Molberg, Siri Tennebø Flåm, and Benedicte Alexandra Lie

ABSTRACT. Objective.We aimed to jointly investigate the role of antipeptidyl arginine deiminase type 4 antibodies
(anti-PAD4) and polymorphisms in the PADI4 gene together with clinical variables in rheumatoid
arthritis (RA). 
Methods. Serum IgG autoantibodies to human recombinant PAD4 were identified by DELFIA
technique in 745 patients with RA (366 available from previous studies). Genotyping of PADI4 was
performed using TaqMan assays in 945 patients and 1118 controls. Clinical data, anticitrullinated
protein antibodies (ACPA) status, shared epitope status, and a combined genetic risk score were also
available. 
Results. Anti-PAD4 antibodies were detected in 193 (26%) of 745 patients with RA; 149 (77%) of
these were also ACPA-positive. No association was observed between anti-PAD4 status and clinical
characteristics, PADI4 polymorphisms, or genetic risk scores after stratification for ACPA status. 
Conclusion. Taken together, the results from these combined serological, genetic, and clinical analyses
suggest that anti-PAD4 appears to be a bystander autoantibody with no current clinical utility in RA.
(First Release June 1 2018; J Rheumatol 2018;45:1211–19; doi:10.3899/jrheum.170769)
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Rheumatoid arthritis (RA) is a chronic multifactorial
immune-mediated disease of unknown etiology causing
cartilage and bone destruction in association with distinct
serum autoantibodies1,2. The genetic component is estimated
to account for 60%1, and the major genetic determinant is
certain alleles in the HLA–DRB1 gene encoding the shared
epitope (SE)3,4, whereas smoking is the strongest environ-
mental risk factor identified5. The major autoantibodies in
RA are anticitrullinated protein antibodies (ACPA). The
ACPA recognize protein-bound citrulline residues generated
posttranslationally by a family of enzymes called the peptidyl
arginine deiminases (PADI). Both PADI2 and PADI4 have
been shown to be associated with RA6,7,8,9,10. PADI4 has
been genetically associated with RA, and it is a target of
anti-PAD4 autoantibodies. 
    PADI4 is expressed in T cells, B cells, macrophages,
neutrophils, fibroblast-like cells, and endothelial cells in the
lining and sublining areas of the RA synovia11. Studies have
previously reported anti-PAD4 antibodies to be associated
with a more aggressive disease course12,13,14,15. Moreover,
PADI4 deficiency reduced severity in an arthritis mouse
model16. Anti-PAD4 antibodies have been found in sera from

 www.jrheum.orgDownloaded on April 16, 2024 from 

http://www.jrheum.org/


patients with preclinical RA (i.e., several years prior to
diagnosis), but only in one-third of patients was anti-PAD4
detected before ACPA17. 
    The PADI4 gene, tagged by rs2301888, is among the 101
RA susceptibility loci reported in 2014 in a large
genome-wide association study (GWAS) comprising 100,000
individuals18. In 2003, the PADI4 gene had already been
found to be associated to both disease susceptibility and
severity in Asian populations19,20. The association was,
however, less clear in white populations21,22,23,24, and a
metaanalysis concluded that the PADI4 polymorphism,
rs2240340, was associated with RA in Asians but not in
Europeans25. The RA association seen in Japan was with a
functional PADI4 haplotype influencing gene expression
levels, and the susceptibility haplotype was associated with
a more stable mRNA (PADI4 mRNA), and therefore poten-
tially higher levels of PADI4 proteins19. 
    Not until 2012 was the PADI4 gene convincingly
associated with risk of RA in whites, by rs2040336, a
polymorphism in weak linkage disequilibrium (LD) to those
detected in Asians26. The discrepant observations regarding
involvement of PADI4 polymorphisms could be due to differ-
ential LD patterns between Asian and white populations.
Another explanation could be that the PADI4 variants do not
exert risk for all patients with RA, but only for certain clinical
subphenotypes (e.g., according to severity or antibody
status). PADI4 polymorphisms (represented by rs1748033)
have previously been reported to predispose male smokers
for RA27, and the genetic heterogeneity between Asian and
European populations was suggested to be explained by
differences in smoking prevalence among men27. Addition-
ally, the influence of anti-PAD4 on genetic profiles has not
yet been addressed. 
    In this study, we aimed to jointly investigate the role of
PADI4 polymorphisms, anti-PAD4, and clinical variables in
RA. Our cohort is the largest that has been characterized for
anti-PAD4 status so far. In addition, we have targeted
polymorphisms with diverging LD patterns between Asian
and white populations to address the population discrepancies
seen for PADI4 polymorphisms and RA association. 

MATERIALS AND METHODS 
Patients and controls. The RA cohort comprises 945 cases diagnosed
according to the 1987 American College of Rheumatology criteria28. The
patients were recruited from 3 RA cohorts and 1 register study: the European
Research on Incapacitating Disease and Social Support (EURIDISS) cohort,
a cohort of patients with early RA undergoing magnetic resonance imaging,
a cohort of patients starting tumor necrosis factor inhibitor therapy, and the
Oslo RA register (ORAR)13,29,30,31. Data on ACPA and rheumatoid factor
(RF) status were available for 886 of the 945 patients. 
     Most RA cases (n = 745) had serum samples available for anti-PAD4
detection. Of these, 366 patients had previously been assessed for
anti-PAD412. For anti-PAD4 delineation on ELISA assay, 70 healthy controls
(matched for age, sex, and county of residence) were used. 
     Analyses investigating whether disease activity varied according to
anti-PAD4 antibody status were restricted to patients from the ORAR,

because this represents the largest patient population (n = 395) and the
inclusion criteria and clinical information available varied between cohorts.
These variables were obtained from examinations performed in 1996/97 of
patients included in the ORAR: 28-joint count Disease Activity Score
(DAS28), 28-joint swollen joint count (SJC28), 28-joint tender joint count
(TJC28), joint deformity count, C-reactive protein (CRP), erythrocyte
sedimentation rate (ESR), and modified Health Assessment Questionnaire
(mHAQ). 
     All 945 patients and 1118 controls from the Norwegian Bone Marrow
Donor Registry had DNA available and were included in genotyping of
PADI4 single-nucleotide polymorphisms (SNP). Genotyping data for
HLA-DRB1 and SE information were available for patients and controls32,
as were the genetic risk score (GRS) based on HLA-DRB1 and 22 non-HLA–
risk SNP33. 
     The regional ethics committee approved this study (approval numbers:
281/98, 37/96, 764-04172, S-04279), and all participants gave written
informed consent. 
Anti-PAD4 antibody assay. The full-length human recombinant PADI4
cDNA was provided by Dr. M. Yamada (Graduate School of Integrated
Science, Yokohama City University, Yokohama, Japan), expressed as a
fusion protein with the 26 kDa glutathione S-transferase and purified as
previously described34. The detection of IgG autoantibodies to human
recombinant PAD4 (hPAD4) in RA sera was done by a dissocia-
tion-enhanced lanthanide fluorescence immunoassay (DELFIA) technique
as described elsewhere12. Briefly, active hPAD4 (5 µg/ml) were incubated
overnight, followed by blocking and adding of 100 μl serum (diluted
1:2000). For detection, rabbit anti-human IgG (1:10000), biotinylated goat
antirabbit IgG (1:8000), and Europium-labeled streptavidin were used and
the signals were detected (Wallac). Each sample was analyzed in triplicate
and 4 healthy control samples were included on each plate. Anti-PAD4
responses were calculated by subtracting the mean background signal (wells
without serum) from the mean anti-PAD4 signal, and samples having a
signal above the 95% percentile of the signal from the healthy control
samples (n = 70) were assigned as anti-PAD4 positive.
SNP selection and TaqMan genotyping. Genomic DNA was extracted
manually from blood samples by using a salting out method, and whole
genome amplification by RepliG (Qiagen). The selection of SNP was based
on previous associations, and on the discrepancies between the PADI4
associations observed in Asians [rs2240340 (intron SNP)] versus whites. We
hypothesized whether the lack of association seen in whites (as opposed to
Japanese) with rs2240340 was due to difference in LD patterns, and
therefore selected candidate SNP (minor allele frequency > 10%) that were
in LD with rs2240340 in the Japanese population (r2 > 0.8) but not in LD in
whites (r2 < 0.8). We used HapMap release 22, Chr 1: 17507279-1756308,
and identified 22 SNP fulfilling these criteria (shown in Supplementary Table
1, available with the online version of this article), which were tagged by
the 4 SNP rs10788664, rs1635579, rs2240335, and rs755449 (r2 > 0.9 in the
white population).
     Additionally, rs2240336 within the PADI4 locus (intron SNP) was
selected from the RA immunochip study26, and this SNP is in LD (r2 = 0.83)
with the PADI4 SNP (rs2301888) identified in the recent and largest
GWAS18. The 6 SNP were genotyped using allele discrimination TaqMan
assays (Applied Biosystems): C_16176717_10 (rs2240340), C_7541127_10
(rs1635579), C_1296956_10 (rs10788664), C_3123006_1 (rs2240335),
C_3123007_1_ (rs2240336), and C_937989_10 (rs766449). Only SNP with
a genotype success rate > 95% and in Hardy-Weinberg equilibrium (HWE)
in both patients and controls (p > 0.01) were included for analyses. All SNP
had genotype success rates > 97%, but rs766449 deviated from HWE 
(p = 0.0006) and was excluded from further analyses. Given that the allele
frequencies are > 30% and published OR > 1.2, we have > 80% power to
detect an association (p < 0.05) with RA in our dataset [calculated 
using PS power and sample size calculation (ps-power-and-sample-size-calcu-
lation.software.informer.com)].
Calculating GRS. GRS were calculated as standardized GRS, as described
by Maehlen, et al33. GRS-22 contained genetic data on 22 non-HLA RA
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associated loci, whereas GRS-31 consisted of the 22 genetic loci plus all 8
SE alleles, in addition to the protective effect of DRB1*13:01. Mean GRS
was 0 in controls, meaning no increased genetic risk to develop RA. 
Statistics. Continuous clinical variables were tested for association with
anti-PAD4± stratified for ACPA status using 1-way ANOVA or
Mann-Whitney U test for continuous data (age at onset, disease duration,
CRP, ESR, mHAQ, DAS, SJC28, and TJC28) or using Pearson’s chi-square
test for dichotomous variables (sex, RF status, smoking, SE status, and total
deformed joints). P values < 0.004 were considered significant after
correction for multiple testing (n = 14, using Bonferroni correction). We
performed univariate and multivariate linear regression models to test
whether anti-PAD4 was associated with disease outcome. In the multivariate
regression, we corrected for factors known to influence the disease outcome
variables of RA: ACPA, sex, age at disease onset, and disease duration.
Residual plots were inspected for all outcomes in both the univariate and
multivariate regression analyses. Clinical characteristics were compared in
R v.3.3.3 (2017-03-06; R Foundation for Statistical Computing). Plink v1.07
was used to perform chi-square allelic tests to investigate the associations
between SNP and phenotypes (pngu.mgh.harvard.edu/purcell/plink). LD
was calculated based on 99 HapMap individuals (Utah residents with
Northern and Western European ancestry from the Centre d’Etude du
Polymorphisme Humain collection; CEU) and downloaded from 1000
Genomes35. An LD map with gene structure was generated in Haploview
v4.236. The greyscale of the LD squares represents their r2 values, ranging
from r2 = 0 (white) to r2 = 1 (black). Differences between the standardized
GRS means were calculated using 1-way ANOVA (using built-in general
statistics in R Foundation). For graphic presentations, R: a language and
environment for statistical computing (R Foundation) was used.  

RESULTS
Clinical characteristics of patients according to anti-PAD4
status. Among the 379 patients with RA presently tested for
PAD4 antibodies, the proportion of anti-PAD4 positive was
27.7% (n = 105). The proportion of anti-PAD4–positive
patients was 25.9% in our total RA cohort (n = 745), when

combining 366 patients previously tested for anti-PAD412
with our 379 presently anti-PAD4–tested patients with RA.
    The demographics of all the 745 patients with RA strat-
ified for anti-PAD4 status are shown in Supplementary Table
2, available with the online version of this article. Differences
between anti-PAD4–positive and -negative were seen in
female sex (82.9% vs 75.9%, p = 0.04), ever smoker status
(54.3% vs 66.6%, p = 0.004), RF positivity (64.0% vs 49.9%,
p = 0.001), and in particular, ACPA positivity (77.2% vs
57.4%, p = 1.0 × 10-6). 
    The distribution of patients with RA according to both
ACPA and anti-PAD4 status is shown in Figure 1. The
majority of the patient cohort was positive for ACPA but
negative for anti-PAD4 (42%). Further, 20% of patients were
positive for both ACPA and anti-PAD4, while only 6%
patients were anti-PAD4–positive and ACPA-negative. 
    ACPA status may influence the patient characteristics, and
after stratification for ACPA status, most differences between
anti-PAD4–positive and -negative patients disappeared
(Table 1). Among ACPA+ patients, the proportion of ever
smokers was lower in anti-PAD4+ vs anti-PAD4– patients
(54.5% vs 69.0%, p = 0.004); this difference was not seen in
ACPA– patients. In ACPA– patients, there was a higher
percentage of females in anti-PAD4–positive patients com-
pared with anti-PAD4–negative patients, though this
difference was only borderline significant (88.6% vs 74.5%,
p = 0.041). None of these associations withstood correction
for multiple testing (significance threshold p < 0.004).
    To examine whether anti-PADI4 influence disease activity,
we investigated the ORAR patients (n = 395). Their clinical
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Figure 1. The proportions (%) of patients with rheumatoid arthritis (n = 745) according to
antibody status for anti-PAD4 and ACPA. ACPA: anticitrullinated protein antibodies; aPAD4:
antipeptidyl arginine deiminase type 4. 
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characteristics after stratification for anti-PAD4 are shown in
Supplementary Table 3, available with the online version of
this article. The anti-PAD4–positive patients had a higher
DAS28 score (4.7 vs 4.35, p = 0.043), SJC28 (8.0 vs 6.0, 
p = 0.02), and CRP (11.5 vs 9.0, p = 0.006), but also
displayed a longer disease duration (14.3 vs 11.7, p = 0.012)
and a larger proportion of ACPA and RF positivity (p < 0.02).
Next, we examined whether anti-PAD4 could predict clinical
outcomes by using a linear regression model. The univariate
model (Table 2) supported the association with DAS28 
(p = 0.04), SJC28 (p = 0.005), and CRP (p = 0.008). The
multivariate model (Table 2) demonstrated no effect of
anti-PAD4 antibody status on any of the clinical variables
after adjusting for ACPA, sex, age at onset, and disease
duration. These findings are in accordance with the
cumulative probability plot (Supplementary Figure 1,
available with the online version of this article), where
anti-PAD4 status does not seem to influence the DAS28
scores (p > 0.2). In contrast, ACPA+ patients had on average,
as expected, a higher DAS28 than ACPA– patients. 
Association analyses of PADI4 polymorphisms according to
antibody status, sex, and smoking status. The distribution of
genotypes and alleles of the 5 PADI4 SNP did not differ
significantly (p > 0.1) between patients with RA (n = 945)
and controls (n = 1118; Supplementary Table 4, available
with the online version of this article). Because the genetic
profile of patients with RA is known to differ based on

autoantibody status33, we first stratified according to ACPA.
In ACPA– patients versus controls (Supplementary Table 5),
rs2240340 and rs1635579 showed a weakly significant
association with RA (p = 0.045 and p = 0.016, respectively),
while no association was seen in ACPA+ patients (Supple-
mentary Table 6). When stratifying for both anti-PAD4 and
ACPA (Figure 2A), the 2 SNP (rs2240340 and rs1635579)
appeared to be associated only with RA in patients lacking
both ACPA and anti-PAD4 (p = 0.024). This association 
(Pc = 0.48) did not withstand correction for multiple testing.
None of the SNP showed any allelic association with RA
when stratifying only for anti-PAD4 status (data not shown).
The LD values between the PADI4 SNP are displayed in
Figure 2B.
    In light of the association seen between PADI4 polymor-
phisms (particularly rs1748033) and male smokers in RA27,
we examined the association for the PADI4 polymorphisms
rs2240340 and rs1635579 (r2 = 1 between rs1635579 and
rs1748033, Figure 2B) in different strata according to sex,
smoking, and ACPA status. A weak association was seen in
ever smokers when comparing ACPA-positive and -negative
patients; however, no association was observed in the strata
of male smokers in particular (Figure 3, and Supplementary
Table 7, available with the online version of this article). 
Genetic risk score and autoantibodies (ACPA and anti-PAD4).
We wanted to investigate whether a more complex genetic
risk profile differed between antibody subgroups. There was
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Table 1. Demographics of the patients with rheumatoid arthritis (n = 745) after stratification for antibody status (ACPA and anti-PAD4).

                                                                                                   ACPA+                             ACPA–
                                                             anti-PAD4+                 anti-PAD4–                        p                           anti-PAD4+                    anti-PAD4–              p

Total                                                            149                               317                                                                   44                                  235                      
Sex (% women)                                     121 (81.2)                    244 (77.0)                      0.30                           39 (88.6)                        175 (74.5)             0.04
RF (% positive)                                     106 (74.1)                    223 (74.6)                      0.92                           13 (30.2)                         39 (17.3)              0.05
SE (% positive)                                      128 (87.1)                    268 (86.2)                      0.79                           20 (46.5)                        127 (55.7)             0.27
Smoke (% ever smokers)                       73 (54.5)                    196 (69.0)                     0.004                          21 (53.8)                        139 (63.5)             0.25
Age at onset, yrs, mean (SD)                45.9 (14.4)                   47.9 (14.9)                      0.18                         49.1 (17.2)                      47.6 (16.9)             0.58

ACPA: anticitrullinated protein antibodies; anti-PAD4: antipeptidyl arginine deiminase type 4; RF: rheumatoid factor; SE: shared epitope. 

Table 2. The influence of anti-PAD4 on clinical outcome in patients with rheumatoid arthritis participating in the ORAR registry study (n = 395).

          Univariate                                                                                                       Multivariate
                               anti-PAD                         anti-PAD                        ACPA                           Sex                       Age at Onset          Disease Duration   Adj. R2*
                       Std. β             p               Std. β              p             Std. β            p           Std. β             p            Std. β             p           Std. β             p                

mHAQ            0.039          0.440           –0.012          0.806          0.028         0.569        0.090         0.064       –0.260      < 0.0001    –0.356      < 0.0001     0.097
DAS28            0.103          0.043            0.033           0.479          0.219      < 0.0001      0.124       < 0.0001     –0.315      < 0.0001    –0.348      < 0.0001     0.180
SJC28             0.142          0.005            0.068           0.156          0.279      < 0.0001      0.076         0.110       –0.135        0.014      –0.258      < 0.0001     0.149
TJC28            –0.016         0.747           –0.055          0.279          0.088         0.079        0.062         0.215       –0.202       0.0005    –0.0233     < 0.0001     0.048
CRP, mg/dl     0.135          0.008            0.075           0.123          0.232      < 0.0001      0.036         0.459       –0.275      < 0.0001    –0.255      < 0.0001     0.141
ESR, mm/h     0.042          0.412            0.023           0.634          0.243      < 0.0001     –0.063        0.199       –0.206       0.0003      0.256       < 0.0001     0.116

* Adjusted R2 represents the multivariate linear regression. Anti-PAD4: antipeptidyl arginine deiminase type 4 antibodies; ACPA: anticitrullinated protein
antibodies; ORAR: Oslo Rheumatoid Arthritis register; mHAQ: modified Health Assessment Questionnaire; DAS28: 28-joint count Disease Activity Score;
SJC28: 28-joint swollen joint count; TJC28: 28-joint tender joint count; CRP: C-reactive protein; ESR: erythrocyte sedimentation rate. 
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Figure 2. A. Association of the 5 tested PADI4 polymor-
phisms with RA stratified for autoantibody status. X axis
shows the SNP base pair position on chromosome 1. Y
axis shows the log-transformed p values. Dots represent
the p value for corresponding SNP subgrouped into
antibody subgroups of RA as well as for all patients with
RA. B. LD (r2) between PADI4 polymorphisms tested in
this study and previously reported to be associated with
RA (based on CEU samples from the 1000 genomes
project). RA: rheumatoid arthritis; ACPA: anticitrullinated
protein antibodies; aPAD4: antipeptidyl arginine deimin-
ase type 4; CEU: Utah residents with Northern and
Western European ancestry from the Centre d’Etude du
Polymorphisme Humain collection, HapMap; SNP: single
nucleotide polymorphism; LD: linkage disequilibrium.
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no association between cumulated genetic risk scores
(GRS-22 and GRS-31 risk scores) and anti-PAD4 status
(Supplementary Figure 2, available with the online version
of this article, and Figure 4). In GRS-31, single anti-PAD4+
patients did not show increased genetic risk compared to
double antibody–negative patients (anti-PAD4–ACPA–;
mean GRS-31: 0.28 vs 0.11, p = 0.34, Figure 4A). In contrast,
anti-PAD4–ACPA+ patients had higher GRS-31 compared

to anti-PAD4–ACPA– patients (mean GRS-31: 1.04 vs 0.11,
p = < 2*10-16), implying that GRS-31 is associated with
ACPA status, not anti-PAD4 status. Finally, the double-posi-
tive group (anti-PAD4+ACPA+) did not have an increased
risk compared to single ACPA+ patients (mean GRS-31: 1.04
vs 0.96, p = 0.38; Figure 4B). In addition, HLA-DRB1 alleles
were equally distributed between anti-PAD4–positive and 
-negative patients (data not shown). 
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Figure 3. OR with 95% CI for ACPA+ vs ACPA– when carrying the minor allele at rs1635579 or rs2240340. Numbers of patients in the different subgroups
are shown in brackets (no. ACPA+/no. ACPA–). ACPA: anticitrullinated protein antibodies.

Figure 4. Distribution of standardized GRS-31 in controls (n = 1121) and patients (n = 744) stratified for anti-PAD4 and ACPA status. A. Controls and 
ACPA– patients stratified for anti-PAD4; aPAD4– ACPA– (n = 235) and aPAD4+ACPA– (n = 44). B. Controls and ACPA+ patients stratified for anti-PAD4;
aPAD4–ACPA+ (n = 316) and aPAD4+ACPA+ (n = 149). ACPA: anticitrullinated protein antibodies; aPAD4: antipeptidyl arginine deiminase type 4; GRS:
genetic risk score.
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DISCUSSION
The frequency of anti-PAD4 varies among studies, and
occurs in 22–50% of patients with RA12,14,37,38,39. An
increase in anti-PAD4 positivity by disease duration has been
proposed14,38 and may explain the differences in observed
anti-PAD4 frequencies14, as well as use of assays directed
also against citrullinated residues due to autocitrullination40.
The Norwegian patients analyzed for anti-PAD4 in our study
had similar frequency (27.7%) to the previously tested cohort
(23%) from Norway12. The frequency observed is in accor-
dance with the low sensitivity reported for this antibody17,
and anti-PAD4 status also differed with disease duration in
our ORAR patients. In addition, anti-PAD4 does not appear
to be disease-specific, because it has been detected in other
rheumatic diseases, although with lower titers12,15. 
    In contrast to what had been reported in other studies, we
did not observe any significant association between disease
severity (represented by DAS28, SJC, ESR) and anti-PAD4
status in the multivariate analyses14,41,42. Although this is a
relatively large study (n = 395), there are 2 important limita-
tions: first, the lack of radiographic data and second, the
cross-sectional design. Radiographic damage reveals
longterm inflammation while DAS28 reflects current disease
activity; therefore, a longitudinal study with radiographic
data would better address the question of whether anti-PAD4
influence disease severity. An association with radiographic
damage has previously been reported in a subset of our cohort
with longitudinal data (EURIDISS, n = 177)12. Interestingly,
Darrah, et al found that a subset of anti-PAD4 positive
patients with cross-reactive antibodies to PAD3/PAD4 had a
higher baseline radiographic score and higher likelihood of
radiographic progression, a finding later replicated41,42.
Similarly, presence of anti-PAD3/PAD4 antibodies was
associated with interstitial lung disease in patients with RA,
another marker of disease severity43. Moreover, anti-
PAD3/PAD4 antibody increased the efficiency of PADI4 by
reducing the enzyme’s calcium requirement, which therefore
highlights a positive feed forward loop that may (partly)
explain the association between anti-PAD4 and disease
severity. Unfortunately, we do not have data available on
anti-PAD3/PAD4 antibodies in our cohort and thus cannot
explore this hypothesis. 
    Our lack of association between anti-PAD4 and clinical
variables are in accordance with previous observations that
anti-PAD4 is mainly detected in established RA39 and
suggests that the production of anti-PAD4 antibodies appears
to be driven by processes that are not directly linked to the
generation of ACPA antibodies. It has been hypothesized that
ACPA develops first against proteins that have been citrulli-
nated by the PADI4 enzyme, and that PADI4 later becomes
an antigen44. It is also suggested that the association between
ACPA and anti-PAD4 could be due to epitope spreading.
Interestingly, antibodies to bacterial PAD from Porphyro-
monas gingivalis (PPAD), and citrullinated epitopes from

PPAD, are also found in RA, but in a similar way to
anti-PAD4, these antibodies also develop after the ACPA
response45,46. Intriguingly, we observed the presence of
anti-PAD4 in the absence of ACPA in 6% of the patients. This
is in line with the observations of anti-PAD4 in other
autoimmune diseases not characterized by ACPA. However,
it may also be possible that these PAD-positive–
ACPA-negative patients have antibodies against citrullinated
proteins not detected by ordinary anticyclic citrullinated
peptide assay47. 
    Regarding smoking, we found that there was a lower
proportion of smokers in anti-PAD4+ patients than
anti-PAD4– patients in the ACPA-positive subset. One could
hypothesize whether epitope spreading, preceding clinical
onset of RA, is facilitated by either smoking and/or PAD4
activation, because this could explain the lower incidence of
smokers seen in the anti-PAD4+ patients.
    No association was observed between anti-PAD4 status
and PADI4 SNP in our cohort (n = 745). This has been inves-
tigated only in 1 previous study of a Mexican RA cohort 
(n = 170), and their findings are in accordance with ours38.
Further analyses in subgroups stratified for both ACPA and
anti-PAD4 status showed a borderline association in
ACPA-negative, anti-PAD4–negative patients having the
minor allele of rs2240340 and rs1635579. There is solid
evidence that genetic risks are highly ACPA-dependent48.
Hence it is crucial to stratify patients by ACPA status,
although smaller patient groups increase the chance of type
2 errors and reduce power. This association did not withstand
correction for multiple testing and could be a false-positive
finding. 
    The failure to detect association to PADI4 earlier in whites
could be explained by population differences in LD patterns,
and rs2240340 might just be a tag SNP for the causal variant
only in Asians. Alternatively, the predisposition conferred by
PADI4 polymorphisms could be restricted to certain RA
subphenotypes. We did not find any signs of association
restricted to specific RA strata, such as autoantibody status,
or between male smokers and PADI4 SNP. The latter has
previously been suggested to explain the genetic PADI4
heterogeneity with RA susceptibility between Asians and
Europeans, given differences in smoking prevalence27.
Interestingly, rs2301888, which has recently been revealed
to be associated with RA in both Asian and white popula-
tions, is in strong LD with the initial PADI4 SNP, rs2240340,
associated in only Asian and not white populations. Hence,
the delayed detection of an association with PADI4 in whites
seems to be explained by differential LD patterns.
    No association was shown between anti-PAD4 status and
either PADI4 SNP, SE, HLA-DRB1 alleles, or a more
complex genetic risk score. ACPA alone showed a higher
genetic RA risk profile compared to ACPA-negative patients
or controls. It has previously been demonstrated that a higher
risk of RA exists with an increased number of antibodies (RF
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and ACPA)33, but this additional risk is not seen with
anti-PAD and ACPA. A limitation of the tested genetic risk
factors is that most genetic studies in RA have been
performed in the ACPA+ patient groups, and other genetic
variants could be of importance in anti-PAD4 development. 
    Anti-PAD4 detection does not provide any clear clinical
value, especially when compared with ACPA. Whether
anti-PAD4 has a prognostic value regarding radiographic
disease progression should be addressed in additional studies.
The lack of association between anti-PAD4, clinical charac-
teristics, and genetic risk factors suggests that anti-PAD4 is
not a primary driver of the RA pathogenesis.  
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