Canakinumab for Childhood Sight-threatening Refractory Uveitis: A Case Series

ALICE BRAMBILLA, ROBERTO CAPUTO, ROLANDO CIMAZ and GABRIELE SIMONINI

J Rheumatol 2016;43;1445-1447
http://www.jrheum.org/content/43/7/1445

1. Sign up for TOCs and other alerts
http://www.jrheum.org/alerts

2. Information on Subscriptions
http://jrheum.com/faq

3. Information on permissions/orders of reprints
http://jrheum.com/reprints_permissions

The Journal of Rheumatology is a monthly international serial edited by Earl D. Silverman featuring research articles on clinical subjects from scientists working in rheumatology and related fields.
Canakinumab for Childhood Sight-threatening Refractory Uveitis: A Case Series

To the Editor:

Pediatric noninfectious uveitis embraces a group of inflammatory eye diseases responsible for severe uveal complications and blindness. Therapeutic options encompass topical or systemic steroid therapy, conventional immune-modulatory therapy, and tumor necrosis factor-α (TNF-α) antagonists. The use of anti-TNF-α modifier immunosuppressant treatment may apply to refractory cases. Canakinumab is a human monoclonal antibody (IgG1) directed against interleukin 1β. It has been successfully used in cryopyrin-associated periodic syndromes, systemic-onset juvenile idiopathic arthritis (JIA), refractory Behcet disease, and colchicine-resistant familial Mediterranean fever. Preliminary evidences suggest the efficacy of canakinumab for refractory eye diseases in patients affected by Blau syndrome, juvenile Behcet syndrome, and chronic infantile neurologic cutaneous and articular syndrome. Here we report 2 children affected by refractory sight-threatening uveitis who have been successfully treated with canakinumab.

Case 1. A 6-year-old boy was referred to our center for severe idiopathic uveitis, presenting with bilateral cataract, vitreous inflammatory exudation, and severe visual loss (right eye 20/32, left eye 20/50). The intraocular pressure was within the normal limits. Clinical history and ocular findings were consistent with the diagnosis of intermediate idiopathic uveitis.

On admission, intravenous steroid treatment was started (methylprednisolone 30 mg/kg/day for 3 days), followed by oral prednisone (1–2 mg/kg/day) and methotrexate (MTX; 10–15 mg/m² weekly). Despite the initial remission, during steroid tapering over 4 months, he developed vitreal snow banks, vitreomacular traction, and retinal schisis, requiring surgical treatment. We decided to discontinue MTX and introduce adalimumab (ADA; 24 mg/m² every 2 weeks). Throughout the followup, recurrent uveitis flare with cystoid macular edema were documented; hence, after 18 months with canakinumab.

Case 2. A 9-year-old girl was referred to our hospital for recurrent uveitis associated to JIA. At a different hospital, a previous therapeutic attempt with MTX (15 mg/m² weekly) and infliximab (5 mg/kg/dose) had soon been discontinued because of allergic reaction to anti-TNF treatment.

Ophthalmologic examination highlighted keratic precipitate, Tyndall effect, and visual loss (right eye 20/50, left eye 20/32). Given the persistence of ocular inflammation and the recurrence of arthritis, we decided to introduce ADA (24 mg/m² every 2 weeks) associated to MTX (15 mg/m² weekly). This protocol ensured a stable clinical remission over 16 months. Thereafter, she flared again and recrudescence of ocular inflammation along with arthritis reactivation were detected. Treatment with ABA (10 mg/kg every 4 weeks) and MTX was started, leading to poor clinical control and a new uveitis flare in the left eye with the development of cataract and cystoid macular edema. Because of the recurrence of uveitis and the persistence of arthritis, after an 8-week washout period, ABA was switched to canakinumab.

Both children received intravenous methylprednisolone (30 mg/kg for 3 days) followed by maintenance therapy with oral prednisone (0.25–1 mg/kg daily) and canakinumab (2 mg/kg monthly). Patient 2 received concomitant therapy with MTX, which was discontinued after 6 months from the introduction of canakinumab. Ocular remission was achieved with vision improvement, and oral steroid therapy was tapered after 2 months and discontinued after 4 months in Patient 1 and 10 months in Patient 2. During the 12-month period of followup, no new uveitis flares occurred. Visual acuity normalized in both patients (right eye 20/25, left eye 20/20).

Intraocular pressure persisted within normal limits. Optical coherence tomography excluded the recurrence of cystoid macular edema (Figure 1B). The therapy has been well tolerated without major side effects, infusion reactions, or drug-related adverse events.

According to the other cases reported in the literature, our experience suggests a potential involvement of canakinumab in maintaining remission in children affected by severe sight-threatening uveitis refractory to previous biological treatments. To our knowledge, ours is the first report of the use of canakinumab for pediatric uveitis.

ALICE BRAMBILLA, MD, Rheumatology Unit, Azienda Ospedaliero Universitaria (AOU) Anna Meyer Children’s Hospital; ROBERTO CAPUTO, MD, Ophthalmology Unit, AOU Anna Meyer Children’s Hospital; ROLANDO CIMAZ, MD, Rheumatology Unit, AOU Anna Meyer Children’s Hospital; GABRIELE SIMONINI, MD, Rheumatology Unit, AOU Anna Meyer Children’s Hospital, Florence, Italy. Address correspondence to Dr. A. Brambilla, AOU Anna Meyer Children’s Hospital, viale Pieraccini 24, Florence, Italy. E-mail: alice.brambilla02@ateneopv.it

REFERENCES


J Rheumatol 2016;43:7; doi:10.3899/jrheum.160064