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Review

The Role of Innate Immunity in Osteoarthritis: When
Our First Line of Defense Goes On the Offensive
Eric W. Orlowsky and Virginia Byers Kraus

ABSTRACT. Although osteoarthritis (OA) has existed since the dawn of humanity, its pathogenesis remains
poorly understood. OA is no longer considered a “wear and tear” condition but rather one driven by
proteases where chronic low-grade inflammation may play a role in perpetuating proteolytic activity.
While multiple factors are likely active in this process, recent evidence has implicated the innate
immune system, the older or more primitive part of the body’s immune defense mechanisms. The
roles of some of the components of the innate immune system have been tested in OA models in vivo
including the roles of synovial macrophages and the complement system. This review is a selective
overview of a large and evolving field. Insights into these mechanisms might inform our ability to
identify patient subsets and give hope for the advent of novel OA therapies. (First Release Jan 15
2015; J Rheumatol 2015;42:363–71; doi:10.3899/jrheum.140382) 
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Osteoarthritis (OA) is considered an “old” disease. Not only
is it a disease of the elderly but evidence for OA exists in the
archeological record of ancient peoples1. OA involves the
“whole joint,” including articular and meniscal cartilage
degeneration and loss, sclerotic changes to the subchondral
bone, bony osteophytosis, and synovial inflammation2.
Although this disease is widely prevalent, the exact mecha-
nisms involved in its pathogenesis are not well understood.
OA is no longer thought to be a purely noninflammatory or
a biomechanical (“wear and tear”) process but rather one
that has been increasingly recognized to include low-grade
inflammation, often subclinical3, that is predictive of
articular chondropathy. 

In 1 study4, 422 patients (85% with moderate radio-
graphic Kellgren-Lawrence grade 2–3 OA at baseline)
underwent knee arthroscopy at the beginning of the study
and 12 months later. Those noted to have inflammatory

changes in the medial perimeniscal synovium at baseline
were more likely to have progression of tibiofemoral
cartilage damage observed upon followup arthroscopy. This
study did not adjust for baseline severity of OA, which itself
is correlated with synovitis5, so taken alone it cannot
directly prove an independent effect of inflammation on
structural progression. However, at least 2 other studies
more convincingly show a direct effect of inflammation on
OA progression. In 1 recent study with the novel imaging
agent 99mTc-Etarfolatide, which detects activated macro-
phages6, a soluble macrophage marker (CD163) in synovial
fluid was strongly associated with 99mTc-Etarfolatide
positivity of the knee and was also associated with OA
progression based on osteophyte controlling for baseline
osteophyte severity7. Another study showed that effusion
synovitis, assessed by MRI, was an independent predictor of
cartilage loss in the tibiofemoral joint at 30 months followup
in subjects with neither cartilage damage nor tibiofemoral
radiographic OA of the knee at baseline8. 

Based on histological and cytokine expression profiling,
synovial membranes from patients with OA show increased
cellular infiltrates9 and a pannus similar but not as extensive
as that observed in rheumatoid arthritis (RA)10. A number of
inflammatory cytokines, most notably interleukin 1β

(IL-1β) and tumor necrosis factor-α (TNF-α), are increased
in synovial fluid, and both are produced by synovial
membranes and chondrocytes from patients with OA11,12. 

The latest theories of OA pathogenesis implicate the
interplay between mechanical damage and chronic inflam-
mation13,14. Activation of the innate immune system is intri-
cately involved in initiation and perpetuation of this
low-grade inflammation15,16,17. Thus, OA pathology is the
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result of an imbalance between the anabolic and catabolic
processes in the joint11. It seems only fitting that the innate
immune system, considered the older or more “primitive”
branch of our body’s defense, plays a key role in this
“oldest” known disease of humans1. This article is a
non-systematic review of in vitro and in vivo studies that
examine the role of the innate immune system in OA patho-
genesis. We provide a brief overview of innate immunity
and the basic mechanisms by which it becomes activated;
secondly, we review the literature that addresses the innate
immune system, including the complement system and
synovial macrophages, in the pathogenesis of OA. Although
we will discuss the evidence for each, in actuality, this
process involves a complex interaction between the various
branches of the innate immune system.

Overview of Innate Immunity
How does innate immunity, which serves as our first line of
defense, lead to inflammation and joint pathology? The
answer lies in how the innate immune system reacts to
changes that take place in the joint over time. Unlike the
adaptive immune system, innate immunity relies on recog-
nition of conserved motifs generated by pathogens or
damage within the body18. Damage to cellular and cartilage
extracellular matrix (ECM) products from trauma, micro-
trauma (from repetitive overuse), or normal aging generates
damage-associated molecular patterns (DAMP) that activate
the innate immune system15,17. DAMP can be fragments
generated from proteins, proteoglycans, or remnants of
cellular breakdown, such as uric acid16,18,19. DAMP elicit a
sterile inflammatory response through interaction with
particle recognition receptors (PRR), such as Toll-like
receptors (TLR), on the surface of immune cells, or with
PRR in the cell cytoplasm, such as NOD-like receptors
(NLR)15,17,18. 

TLR activation leads to increased expression of pro-
inflammatory cytokines through a number of transcription
factors, such as activator protein 1, cyclic AMP responsive
element binding protein, interferon regulatory factors, and
nuclear factor-κB (NF-κB)20; the latter has been found to
play a role in OA15. The PRR TLR-2 and TLR-4 may be
involved in OA. TLR-2 and TLR-4 are upregulated in the
synovial tissue from patients with OA, although not to the
same extent as those with RA21. Histological studies have
shown increased expression of both TLR-2 and TLR-4 in
articular cartilage lesions in samples from patients with
OA22 as well as the synovial membranes of those patients21.
Human chondrocytes express TLR, and their activation in
tissue culture by TLR agonists leads to upregulation of
matrix metalloproteases (MMP), nitric oxide, and prosta-
glandin E222. Tenascin-C, an ECM glycoprotein, has been
shown in experimental models to cause persistence of
synovial inflammation through TLR-423. The plasma
proteins Gc-globulin (vitamin D–binding protein),

α1-microglobulin, and α2-macroglobulin, found to be
enriched in OA synovial fluid24, can signal through TLR4 to
induce macrophage production of inflammatory cytokines
implicated in OA25. Whereas knockout of TLR-4 resulted in
a less severe phenotype in a mouse IL-1–driven model of
arthritis, knockout of TLR-2 showed a more severe disease
phenotype, suggesting its activation may be a counter-
measure to joint catabolism26. Opposing actions of TLR-2
and TLR-4 have also been described in other tissues
including presynaptic terminals in the spinal cord and
astroglia27 as well as hippocampal neurons28. Cell culture
studies revealed that the extracellular domain A of fibro-
nectin can trigger TLR-4 to produce an inflammatory
response29,30. Both in vitro cell culture studies as well as an
animal model of inflammatory arthritis have suggested that
low molecular weight hyaluronic acid can also trigger either
TLR-2 or TLR-4 to produce an inflammatory response31,32.

NLR activation leads to inflammasome assembly and
activation of the inflammasome-mediated inflammatory
pathways33. In addition, in response to inflammatory
cytokines, chondrocytes have the ability to produce
complement34, another component of the innate immune
response. Various ECM components, such as cartilage
oligomeric matrix protein (COMP)35,36,37 (Table 1), and the
NC4 domain of type 4 collagen38, can also fix complement.
Finally, activation of mechanoreceptors in the cartilage and
the synovium can lead to upregulation of various inflam-
matory mediators39.

Once initiated, this inflammatory response leads to
upregulation of catabolic factors, such as proinflammatory
cytokines, proteolytic enzymes, and chemokines, and
downregulation of anabolic factors, such as antiinflam-
matory cytokines and growth factors11. From a teleological
perspective, the ability of DAMP to trigger the innate
immune system probably is meant to promote wound
healing and tissue repair18,40. However, these events can
lead to further tissue breakdown, which contributes to an
ongoing sterile wound healing cycle resulting in joint tissue
pathology (Figure 1). There are other mechanisms activated
in joint tissues in response to injury and an altered
mechanical environment including altered mechanoreceptor
signaling41 and release of growth factors such as fibroblast
growth factor42. The balance of these responses in
conjunction with the level of activation of the innate
immune response likely orchestrates the net rate and
severity of joint tissue catabolism.

Overall, the pathologic response of the joint results from
a combination of anabolic (growth factors and antiinflam-
matory cytokines) and catabolic forces (proteolytic enzymes
and proinflammatory cytokines)43. The 2 major proinflam-
matory cytokines implicated in OA are IL-1β and TNF-α11;
synovial membrane biopsies from patients with early OA
(symptomatic but no radiographic changes) had greater
immunostaining of these 2 cytokines compared with late
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OA (requiring hip arthroplasty)44, implying that inflam-
mation may play an important role early in the disease
course. In these early OA samples they also observed upreg-
ulation of indicators of inflammation such as cellular infil-
trates, intercellular adhesion molecule 1, vascular
endothelial growth factor, NF-κB, and cyclooxygenase 2
(COX-2)44. Another group found increased concentrations
of IL-15 in the synovial fluid of patients with early versus
late-stage OA, suggesting activation of an innate immune
response in the synovial membrane45. Analysis of synovial
membranes from 54 patients requiring arthroplasty for hip
or knee OA revealed that the majority (57%) had inflam-
matory infiltrates46; the subgroup with inflammatory infil-
trates had higher mean levels of plasma high-sensitivity

C-reactive protein, which was strongly correlated with IL-6
concentrations in the synovial fluid46. In addition, various
other inflammatory cytokines and chemokines have possible
links to OA pathogenesis; these include IL-8, IL-17, IL-18,
IL-21, and leukemia inhibitory factor11,43.

While the proinflammatory cytokines and chemokines
represent the “marching orders,” proteolytic enzymes are
the actual mediators on the “front line,” responsible for
actual degradation of the articular cartilage. The 2 main
groups of enzymes that mediate this catabolic process are
the MMP and ADAMTS11. Various MMP and tissue
inhibitor of metalloproteinases were found to be upregulated
in the synovial fluid from patients with OA47. Also, MMP-1,
MMP-3, and MMP-13 were isolated from both OA pannus
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Table 1. Extracellular matrix breakdown products that can trigger innate immunity.

COMP Happonen, et al, 201036 Regulates complement
Collagen IX (NC4 domain) Kalchishkova, et al, 201138 Direct/indirect inhibition of complement
Fibromodulin Sjoberg A, et al, 200537 Activates classical complement pathway through C1q
Fibromodulin Wang, et al, 201135 Upregulates  C5b-9 (MAC) from human OA sera
Fibronectin (EC domain) Okamura, et al, 200129 Triggers TLR-4
Fibronectin (EC domain) Gondokaryono, et al, 200730 Triggers TLR-4 mast cells
Hyaluronan (HA) Yamasaki, et al, 200965 Triggers inflammasome > IL-1β
HA Scheibner, et al, 200631 Triggers TLR-2
HA Taylor, et al, 200732 Triggers TLR4/CD44/MD-2
Tenascin-C Midwood, et al, 200923 TLR-4 agonist leading to persistent synovial inflammation

COMP: cartilage oligomeric matrix protein; MAC: membrane attack complex; OA: osteoarthritis; TLR: Toll-like receptor.

Figure 1. Osteoarthritis (OA) pathogenesis. This figure depicts the self-perpetuating
cycle of joint degeneration that characterizes the pathogenesis of OA. An inciting injury
to the joint tissue causes the breakdown of the extracellular matrix (ECM), which
activates innate immunity and a cyclic cascade of inflammatory events leading to further
and ongoing joint damage.
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cells and chrondocytes, with MMP-3 being the most highly
expressed from both48. Both bovine and human chondro-
cytes have shown the ability to produce ADAMTS
protein49. Further, RNA expression of ADAMTS from
human OA synovial cells can be altered by exposure to
IL-1β and TNF-α and pharmacologic blockade of these
cytokines50. 

The Complement System
The complement system consists of over 30 proteins. It
includes serine proteases that contribute to an enzymatic
cascade that yields proteins involved with opsonization,
chemotaxis, and cell lysis as well as naturally occurring
inhibitors, such as CD59 (also known as protectin) and
factor H, which serve to keep the complement system in
check51. There are 3 different pathways by which the
complement system can become activated (Figure 2) but all
converge into the membrane attack complex (MAC) formed
from C5b to C9. The MAC forms a cytotoxic ring structure
that perforates its target51. As shown by some studies, MAC
forms in response to the presence of certain ECM proteins,
such as fibromodulin35. Further, MAC also has sublytic
properties that can upregulate inflammatory mediators
without causing direct cytotoxic effects35.

Complement proteins (Table 2) have been found to be
upregulated in both the synovial membranes as well as the
synovial fluid of patients with OA24,52,53. The amount of
MAC deposition in the synovial membrane is correlated
with the level of synovial inflammation on histology53.
Chondrocytes are also capable of synthesizing complement
components whose synthesis in OA can be upregulated by
proinflammatory cytokines such as IL-1β and TNF-α34. C5a
receptors have been found to be upregulated on the surface

of OA chondrocytes but not to the same extent as in RA54.
Other histological studies have found that complement
deposition increases during an acute flare of the disease52.
Likewise, complement levels in the synovial fluid are
elevated during the earlier acute phases of the disease35.
CD59, a naturally occurring complement inhibitor, appears
to be continuously upregulated in OA52, implying that the
complement system is chronically activated in OA. As
described above, various ECM breakdown products, such as
COMP, fibromodulin, and the NC4 domain of type 4
collagen, have all been shown to activate certain com-
ponents of the complement pathway (Table 1).

While this evidence suggests that the complement system
is involved in the pathogenesis of OA, a series of studies in
transgenic mouse models have more definitively demon-
strated a pathological role of the complement system in OA.
For instance, in a medial menisectomy mouse model,
knocking out components of the complement pathway (C5
and C6) attenuated joint damage35. Conversely, knocking
out CD59 (protectin) increased degenerative changes
compared to wild-type mice35. Pharmacologically blocking
the complement system by CR2-fH, a fusion protein of a
complement receptor and the naturally occurring inhibitor
factor H, was associated with less-severe joint damage35.
The same group showed that carboxypeptidase B (CPB)
appeared to have a protective role in OA by inhibiting the
complement system55. Similar to their previous findings35
in a medial menisectomy OA model, mice that were
deficient for CPB showed more cartilage degeneration,
osteophyte formation, and synovitis than wild-type mice55.
In addition, they found that levels of CPB correlated to
levels of MAC in the synovial fluid of patients with OA;
suggesting that CPB has an antiinflammatory role in the
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Figure 2. The complement system. The complement cascade is a complex system that can become activated by any of 3 separate pathways: the
classical, the mannose-binding lectin (MBL), and alternative pathways. All 3 pathways converge on the C3 protein. C3 cleavage products participate
in the activation of C5, whose cleaved components contribute to a local inflammatory response (C5a) or form part of the membrane attack complex
that plays a role in cell lysis (C5b). CD: cluster of differentiation; H: complement factor H; MASP: mannose-binding lectin-associated serine
protease. After Wang, et al, Nat Med 2011;17:1674-935 and Sturfelt and Truedsson, Nat Rev Rheumatol 2012;8:458-6851.
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joint55. Finally, in an in vitro model, CPB-treated serum
decreased MAC formation. Subsequently, they concluded
that CPB has an antiinflammatory effect in OA by inhibiting
formation of MAC55.

Synovial Macrophages
Similar to a war being fought in the air, land, and sea, the
overall innate immune response requires a concerted effort
of multiple lines of defense. In addition to the complement
system, innate immune cells such as macrophages serve
vital functions for the body’s defense56 and play a key role
in innate immunity; they are involved in RA as well as OA9
(Table 2). Macrophages, as their name implies, are major
phagocytic cells of the body, but they also carry out a
number of other important functions, such as initiating
inflammation, resolving inflammation, and restoring and
repairing tissue damage56,57. Usually, macrophages exhibit
a functional plasticity based on signals from their
environment. However, their chronic activation can lead to
deleterious effects56,57.

Macrophages can be activated in a variety of ways. As
mentioned, one of the primary ways is through activation of
PRR, which in turn activate a number of intracellular
pathways such as NF-κB58. Another way macrophages can
become activated is through inflammasome-mediated
pathways59. Inflammasomes are large multimeric intracel-
lular protein complexes that help process caspase-1, which
is responsible for producing the mature forms of several
proinflammatory cytokines such as IL-1β60. NLRP3 is the
most extensively studied of all the inflammasomes59 and
has been associated with crystal-induced inflammation
triggered by uric acid and calcium pyrophosphate61 as well as
hydroxyapatite crystals62,63. One study of patients with knee
OA without gout suggested involvement of uric
acid–activated NLRP3 inflammasomes in the pathogenesis
of OA64. In that study, synovial fluid uric acid concentra-
tions correlated with the concentrations of 2 cytokines,
IL-18 and IL-1β, known to be produced by uric
acid–activated inflammasomes, and synovial fluid IL-18
was associated with OA progression. Hyaluronan also

activates inflammasome pathways65. Because there is a high
degree of correlation of uric acid crystal deposition and
cartilage lesions66, and evidence for inflammasome
activation in association with uric acid in OA62,64, it has
been postulated that the chronic low-grade inflammasome
activation helps drive OA progression62,64. 

Experimental therapies aimed at macrophages have
shown the ability to decrease inflammation and progression
of OA. Depletion of macrophages from a cell-culture
suspension of human OA synovium decreases the inflam-
matory response, including both the cytokine response and
the activity of proteolytic enzymes, such as MMP and
aggrecanases, known to be involved in OA50. Depletion of
synovial macrophages through intraarticular injection of
clodronate leads to less MMP activity and less cartilage
damage in a mouse model of OA67. On the other hand,
macrophages also secrete growth factors such as trans-
forming growth factor-β (TGF-β), which can enhance
cartilage repair68. However, intraarticular injections of
TGF-β into the knees of mice can lead to fibrosis and
extensive osteophyte formation; this response was
abrogated by injecting clodronate beforehand, which
successfully depleted macrophages from the synovial
lining69. Thus, experimental therapies directed toward
macrophages appear to be an attractive future target for OA.

Therapeutic Implications
Because OA has traditionally been thought to be a purely
biomechanical disease, patients diagnosed with this
condition are primarily treated to palliate symptoms. The
growing body of evidence linking the innate immune system
with the pathogenesis of OA provides hope that insights into
these mechanisms might inform our ability to sort patients
into phenotypes. Patients would then stand to benefit the
most from a particular therapy because these patient subsets
could be treated more specifically than is currently possible.
Although currently there are few effective pharmacologic
treatment options for symptomatic OA, intraarticular gluco-
corticoids have shown some efficacy and are recommended
by a number of international treatment guidelines70,71.

367Orlowsky and Kraus: Innate immunity in OA

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2015. All rights reserved.

Table 2. Components of innate immunity with a putative role in osteoarthritis.

C3c, C5 Konttinen, et al, 199652 Increased in synovial membranes of OA patients, further increased during acute flare
C3 Gobezie, et al, 200724 Significantly increased from other SF proteins in proteomic assay
C3a Wang, et al, 201135 Increased in SF of OA patients
C4b Gobezie, et al, 200724 Significantly increased from other SF proteins in proteomic assay
C5b-9 (MAC) Wang, et al, 201135 Increased in SF of OA patients
C5b-9 (MAC) Corvetta, et al, 199253 Increased in synovial membrane of OA patients
C5, C6 Wang, et al, 201135 Knockout mice for these complement proteins showed less OA damage
CD59 (inhibitor) Konttinen, et al, 199652 Chronically upregulated in human OA synovium
CD59 (inhibitor) Wang, et al, 201135 Knockout mice for this complement inhibitor showed more severe OA damage
Macrophages Blom, et al, 200767 Depletion of synovial macrophages leads to MMP activity and less severe OA in
mice
Macrophages van Lent, et al, 200469 Macrophages secrete TGF-β that leads to osteophytes

SF: synovial fluid; OA: osteoarthritis; TGF: tissue growth factor; MAC: membrane attack complex.
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Among their many effects, glucocorticoids lower expression
of complement72,73 and induce macrophage polarization to
an antiinflammatory phenotype74. However, their effects are
broad and associated with numerous adverse effects
including decreased bone formation, hyperglycemia, and
increased risk of infections74. Development of more
targeted therapies is critical for gaining clinical benefit
without adverse effects. 

The question arises of whether the growing body of
knowledge linking the innate immune system to OA patho-
genesis provides any hope for new OA treatments.
Specifically, can slowing the inflammatory response lead to
either symptomatic improvement or halt the progression of
OA? Previous animal knockout models for COX-1 and
COX-275 and IL-1β and IL-1β converting enzyme have
failed to show any chondroprotective effect76 (and may have
led to increased disease). Knockout models are not always
the most informative ones because it is difficult to ascertain
any possible off-target effects (as illustrated by Fukai, et
al75). Instead, are there other in vivo study designs that
provide a more realistic but accelerated model for OA? As
has been pointed out, one of the difficulties facing OA thera-
peutic studies is the long natural history of the disease77.
Posttraumatic arthritis models might provide a way to
evaluate a critical period of OA pathogenesis where inflam-
mation may be involved. Prior studies from our group have
shown that IL-1β is upregulated in the synovial fluid of
animals with posttraumatic arthritis78,79. A prior study found
that recombinant IL-1 receptor antagonist (IL-1RA) used
intraarticularly prevented OA development in an experi-
mental animal model80. More recent studies from our group
have shown IL-1 inhibition to be effective in preventing
progression of posttraumatic OA81,82. Several proof-of-con-
cept studies showed that a dual-variable domain immuno-
globulin directed to both IL-1α and IL-1β prevented
cartilage degradation in an animal model of OA83,84.

Some of these antiinflammatory therapies have been effica-
cious in preclinical OA, but it is not certain how close they are
to clinical availability. Prior human studies using current RA
therapies to block cytokines in OA have met with mixed
success. Intraarticular injections of adalimumab, an anti-TNF-α
monoclonal antibody, showed some improvement in pain
scores for knee OA85 but no statistically significant improve-
ment in pain for hand OA86. Another study showed a reduction
in pain but no changes in radiographic scores after 12 months
for patients with hand OA who received intraarticular
infliximab injections87. Intraarticular injections of anakinra, an
IL-1RA, have shown mixed results in reducing pain in several
small studies88,89. In a proof-of-concept study from our group,
the effects of intraarticular IL-1RA injections were reviewed
following acute joint injury. Patients were randomized to
either placebo or intraarticular IL1-RA. Those who received
the intraarticular IL1-RA were found to have less pain and
improved function90.

Also, targeting the cells or proteins of the innate immune
system holds some promise for OA. There is a growing
body of literature on therapies targeting inflamed synovial
tissue. A new recombinant protein (MT07) representing a
fusion of an anti-C5 monoclonal antibody and a syno-
vial-homing peptide both prevented and successfully treated
synovial inflammation in 2 different animal models of
inflammatory arthritis91. Another new strategy involved
intraarticular injection of a DNA vector encoding an anti-C5
recombinant mini-antibody (MB12/22). This treatment led
to in situ production of this neutralizing antibody, which
resulted in a statistically significant reduction in joint
inflammation in a rat model of inflammatory arthritis92. A
human anti-DR5 antibody (TRA-8) was able to selectively
induce apoptosis in a subset of inflammatory macrophages
in a transgenic mouse model that led to less synovial hyper-
plasia and fewer cellular infiltrates as well as improved
clinical scores93. Because this therapy is directed toward a
subset of inflammatory macrophages, theoretically it should
have fewer off-target effects, but further studies are needed.
Tigatuzumab, a humanized monoclonal antibody to DR5,
has been well tolerated in phase I cancer studies94. To the
best of our knowledge, these therapies have not been studied
in humans for arthritis.

In addition to serving as our first line of defense, the
innate immune system is heavily involved in the patho-
genesis of OA. Once activated, innate immunity “goes on
the offensive,” leading to an inflammatory response that is a
major driver of the disease process. The analogy of an innate
immune system on the offensive is apt, based on the failure
of the innate immune response; chronic stimulation of the
innate immune system drives OA progression, if not 
development43. A greater understanding of the basic mechan-
isms by which innate immunity becomes activated provides
insights into OA pathogenesis. The advent of a
much-improved understanding of the pathogenesis of OA is
critical for effective phenotyping of patient subsets. Only
through effective phenotyping will personalized medicine
become a reality, the goals of which are to increase drug
response rates, decrease adverse event rates, and improve
the overall cost-effectiveness of medical therapy95. It might
be imagined that in addition to being able to identify inflam-
matory subsets of OA, the relative severity and profile of the
innate immune response may reveal subsets within subsets
of OA. These advances could lead to potential new thera-
peutics for OA that would modify symptoms and structural
progression. While OA remains an “old” disease, our new
understanding of it offers hope for more effective therapies
in the future. 
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