Dr. Ludvigsson, *et al* reply

JONAS F. LUDVIGSSON, ALBERTO RUBIO-TAPIA, VAIDEHI CHOWDHARY, JOSEPH A. MURRAY and JULIA F. SIMARD

J Rheumatol 2013;40;1619
http://www.jrheum.org/content/40/9/1619.2

1. Sign up for TOCs and other alerts
 http://www.jrheum.org/alerts

2. Information on Subscriptions
 http://jrheum.com/faq

3. Information on permissions/orders of reprints
 http://jrheum.com/reprints_permissions

The Journal of Rheumatology is a monthly international serial edited by Earl D. Silverman featuring research articles on clinical subjects from scientists working in rheumatology and related fields.
Dr. Ludvigsson, et al reply

To the Editor:

We thank Park, et al for their interest1 in our report2. We agree that the association between SLE and celiac disease (CD) is multifactorial, at both genetic and environmental levels, and merits further study. Interleukin 21 (IL-21), an important cytokine for B cell growth and differentiation, needs to be examined in systemic lupus erythematosus (SLE) and CD, but multiple cytokine pathways are associated with these diseases. The pathogenic role of this cytokine is not exclusive to these 2 diseases, and aberrations in IL-21 are described in rheumatoid arthritis, multiple sclerosis, and Crohn disease. The contribution of IL-21 to the disease process may be complex because of its dual proinflammatory and antiinflammatory effects1. IL-21 has a biphasic role in the BXSB-Yaa mouse model of SLE; early treatment with IL-21 receptor-Fc fusion protein led to decreased survival, whereas late treatment was beneficial, but no differences were found in the severity of nephritis between the groups4. The authors suspected an early beneficial effect of IL-21 in expanding CD8+ suppressor T cells, whereas the late benefit was felt to be secondary to its effect on T follicular helper cells that promote humoral immunity. In CD, IL-21 has a disease-promoting effect, but it is likely in concert with other cytokines such as IL-153. In vitro studies show that IL-21 suppresses the maturation of dendritic cells and downregulates the expression and activation of the NKG2D receptor in human natural killer and CD8+ T cells5; however, these effects are overcome by IL-15. IL-15 promotes chronic intestinal inflammation through its effect on the transforming growth factor-β pathway, and blocking IL-15 may be beneficial6.

Although IL-21 is an attractive therapeutic target, more work is needed to understand its role in the pathogenesis of autoimmune diseases.

JONAS F. LUDVIGSSON, MD, PHD, Clinical Epidemiology Unit, Department of Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Department of Pediatrics, Örebro University Hospital, Örebro, Sweden; ALBERTO RUBIO-TAPIA, MD, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; VAIDEHI CHOWDHARY, MD, Division of Rheumatology, Department of Medicine, Mayo Clinic College of Medicine; JOSEPH A. MURRAY, MD, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine; JULIA F. SIMARD, ScD, Clinical Epidemiology Unit, Department of Medicine, Karolinska University Hospital and Karolinska Institutet. Address correspondence to Dr. J.F. Ludvigsson, Department of Pediatrics, Örebro University Hospital, 701 85 Örebro, Sweden. E-mail: jonasludvigsson@yahoo.com

REFERENCES

J Rheumatol 2013;40:9; doi:10.3899/jrheum.130623