ANKH and Renal Stone Formation in Ankylosing Spondylitis

CENGIZ KORKMAZ and JOHN A. SAYER

J Rheumatol 2012;39;1756
http://www.jrheum.org/content/39/8/1756

1. Sign up for TOCs and other alerts
 http://www.jrheum.org/alerts

2. Information on Subscriptions
 http://jrheum.com/faq

3. Information on permissions/orders of reprints
 http://jrheum.com/reprints_permissions

The Journal of Rheumatology is a monthly international serial edited by Earl D. Silverman featuring research articles on clinical subjects from scientists working in rheumatology and related fields.
ANKH and Renal Stone Formation in Ankylosing Spondylitis

To the Editor:

We read with interest Pimentel-Santos and colleagues’ article on the ANKH gene and susceptibility to and severity of ankylosing spondylitis (AS)\(^1\). They showed that ANKH is not a major determinant of susceptibility to AS and ANKH polymorphism does not influence severity of AS. We describe our experience of ANKH gene polymorphism and renal stone formation in patients with AS.

AS is a chronic inflammatory disease with main involvement of the spine and sacroiliac joints. Spine ankylosis is progressively induced by specific ossifications. It has been reported that 25% of patients with AS had renal stone formation\(^2\). Most of these patients had hematuria. Other studies also showed increased prevalence of renal stone in patients with AS\(^3\). Pyrophosphate is present in normal urine and is an inhibitor of apatite formation\(^4\); thus it would be reasonable to investigate whether ANKH takes place in collecting tubules of both the mouse and human kidney\(^5\), and dysregulation of the channel or polymorphism affecting channel properties may predispose to renal stone formation;\(^5;\) thus it would be reasonable to investigate whether ANKH is associated with increased renal stone formation in patients with AS.

Twenty-three Turkish patients with AS and renal calculi formation were genotyped for 6 single-nucleotide polymorphisms (SNP) within the ANKH gene. These were ANKH promoter –75 CCC GTC GC ins; 5’UTR-4, G > A; intron 2, +8 G > A; exon 2, 294 GCC > GCT (rs17251667); exon 8, 963 GCA > GCG (rs2288474); and intron 8, +15 T > G (rs187483). Genotyping was also performed in 20 ethnically matched healthy controls using a competitive allele-specific polymerase chain reaction system (Kbioscience, Hoddesdon, UK). SNP were chosen from previously reported sequence variants of possible functional importance. Allele frequencies were calculated for each genotype and differences in allele frequency between stone-forming patients with AS and controls were assessed using Fisher’s exact test.

Of the 23 stone-forming patients, 10 had a history of a single calculus and 13 had recurrent stone disease. Stone-forming patients had a mean age of 42.5 years with a mean AS duration of 20 years. In the 6 SNP genotyped, no significant differences in allele frequency were noted between controls and AS patients with renal stones. We found no association between ANKH polymorphisms and renal stone formation in patients with AS.

Initial reports regarding ANKH showed no relationship with susceptibility to AS\(^6\). However, weakly positive findings have been reported by some authors, and the association may be strong in women\(^7,8\). Pimentel-Santos, et al showed that ANKH is not a major determinant of susceptibility to AS and ANKH polymorphism does not influence AS severity\(^1\). We investigated ANKH polymorphism in a subgroup of AS patients with a history of renal stones. We noted that an increased disease duration and hypercalciuria may play a role in the formation of renal stones in AS\(^2\). It can be speculated that ANKH gene polymorphism and renal stone formation may be related. However, we did not find an association between ANKH and renal stone formation in AS. Although this finding may have resulted from the small size of our sample group, it is possible that there is no relationship between ANKH and renal stone formation in AS. We suggested that ANKH polymorphism in renal stone formers with evidence of hypopyrophosphaturia requires investigation\(^9\).

CENGIZ KORKMAZ, MD, Professor of Rheumatology, Department of Rheumatology, Eskisehir Osmangazi University, Eskisehir, Turkey; JOHN A. SAYER, MD, Academic Clinical Senior Lecturer, Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, UK. Address correspondence to Prof. Korkmaz; E-mail: ckorkmaz@ogu.edu.tr

REFERENCES

J Rheumatol 2012;39:8; doi:10.3899/jrheum.120161