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Mitochondrial DNA Copy Number in Peripheral Blood
Is Associated with Femoral Neck Bone Mineral Density
in Postmenopausal Women
JUNG-HA KIM and DUK-CHUL LEE

ABSTRACT. Objective. It has been suggested that mitochondrial dysfunction is related to aging and metabolic dis-

orders. Yet there are few studies of the relationship between bone mineral density (BMD) and mito-

chondrial content in humans. We investigated the relationship between BMD and mitochondrial DNA

(mtDNA) copy number in peripheral blood of postmenopausal women.

Methods. The study included 146 postmenopausal women. Enrolled subjects were taking no medica-

tions and had no disorders that altered bone metabolism. We measured BMD using dual-energy x-ray

absorptiometry and leukocyte mtDNA copy number using real-time polymerase chain reaction.

Anthropometric evaluations and biochemical tests were performed.

Results. Patients with osteopenia or osteoporosis had lower mtDNA copy numbers than normal subjects

(p < 0.0001). Femoral neck BMD was negatively correlated with age (r = –0.01, p = 0.04) and with

serum levels of adiponectin (r = –0.22, p = 0.01) and osteocalcin (r = –0.31, p = 0.0001). Serum levels

of 25-OH vitamin D (r = 0.32, p < 0.0001) and mtDNA copy number (r = 0.36, p < 0.0001) were pos-

itively correlated with femoral neck BMD. Multiple regression analysis showed that mtDNA copy num-

ber (ß = 0.156, p < 0.001) was an independent factor associated with femoral neck BMD after adjust-

ment for age, body mass index, waist circumference, waist-hip ratio, blood pressure, homeostatic model

assessment of insulin resistance, high-sensitivity C-reactive protein, adiponectin, osteocalcin, homo-

cysteine, lipid profiles, 25-OH vitamin D, and regular exercise. mtDNA copy number was not related

to lumbar BMD.

Conclusion. Low mtDNA content in peripheral blood is related to decreased femoral neck BMD in

postmenopausal women. Our findings suggest that mitochondrial dysfunction may be a potential patho-

physiologic mechanism of osteoporosis in postmenopausal women. (First Release May 15 2012; 

J Rheumatol 2012;39:1465–72; doi:10.3899/jrheum.111444)
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Osteoporosis is a medical problem and a major social concern

worldwide because of the increasing elderly population1. In

particular, osteoporotic fractures increase morbidity and med-

ical expenditures in postmenopausal women1,2. Low bone

mineral density (BMD) is well established as the best predic-

tor of osteoporotic fracture as well as a major determinant of

osteoporosis. However, the core pathophysiologic mecha-

nisms of osteoporosis, a complex process involving numerous

cellular components, cytokines, hormones, growth factors,

nutrition, and several signaling pathways1,3, have not been

clearly elucidated. It has been reported that low BMD is asso-

ciated with not only environmental factors such as oxidative

stress4,5 and inflammation6 but also genetic factors such as

family history of osteoporosis7 and copy number variation

(CNV) of the human genome8. Specifically, CNV of

UGT2B17 gene was associated with osteoporosis in Chinese

subjects8.

Mitochondrial dysfunction is related to the aging process.

Reduced mitochondrial quality or content may be associated

with several aging-associated disorders, including cancer9,

cardiovascular disease10, type 2 diabetes11, and metabolic

syndrome12. Mitochondria play a crucial role in energy

metabolism through the electron transport chain, a process

that inevitably produces reactive oxygen species (ROS) as a

byproduct. Mitochondrial DNA (mtDNA) is considered to be

vulnerable to free radical attacks. Moreover, a specific

mtDNA deletion is associated with oxidative stress in periph-

eral blood mononuclear cells (PBMC) of male patients with

severe osteoporosis13 and mtDNA variants in PBMC have
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been found to contribute to the development of osteoporo-

sis14. These results suggest that osteoporosis may be related to

mitochondrial dysfunction.

However, there have been few studies on the relationship

between BMD and mitochondrial function in humans. It has

been suggested that mtDNA content, measured by copy num-

ber, reveals mitochondrial gene stability and biogenesis and

reflects mitochondrial function15. We investigated the rela-

tionship between BMD and mitochondrial function as

assessed by mtDNA content in peripheral blood of post-

menopausal women.

MATERIALS AND METHODS

Study subjects. Our observational cross-sectional study included 146 post-

menopausal women aged 51–72 years who had not experienced vaginal

bleeding for more than 1 year after their last menstruation and had not

received hormone therapy. All participants were patients who visited the pri-

mary healthcare clinic of Chung-Ang University Hospital in Seoul for osteo-

porosis screening between October 2009 and May 2010. Subjects were

excluded if they were taking any medications that alter bone metabolism,

such as bisphosphonates, selective estrogen receptor modulators, tibolone,

corticosteroids, antiretroviral agent, or estrogens, and those with histories of

prior osteoporotic fractures, calcium or vitamin D supplementation, thyroid

disorders, chronic renal disease, or cancer. All subjects completed a lifestyle

questionnaire regarding alcohol consumption, smoking status, physical exer-

cise, and age at menopause. Alcohol consumption was defined as consump-

tion of 72 g or more of alcohol per week. Subjects who reported that they

were smoking at the time of the study were considered to have a smoking

habit. Regular exercise was defined as physical exercise performed for at least

30 min each session, more than twice a week, for more than 6 months. Data

regarding past and current medical diseases and medications were collected

from medical records. The Institutional Review Board of Chung-Ang

University Hospital approved our study, and all subjects provided written

informed consent. 

Mitochondrial DNA copy number in peripheral blood. DNA from peripher-

al leukocytes was extracted from 1 ml whole blood using a commercial kit

(Qiagen, Valencia, CA, USA). Relative mtDNA copy number was measured

using real-time polymerase chain reaction (PCR) with the Light Cycler-Fast

Start DNA Master SYBR Green I kit from Roche Molecular Biochemicals

(Pleasanton, CA, USA). mtDNA quantity was normalized by simultaneous

measurement of the nuclear gene ß-globin16. Forward and reverse primers

for ß-globin were 5’-GAA GAG CCA AGG ACA GGT AC-3’ and 5’-CAA

CTT CAT CCA CGT TCA CC-3’, respectively, and forward and reverse

primers for the mitochondrial ND1 gene were 5’-AAC ATA CCC ATG GCC

AAC CT-3’ and 5’-AGC GAA GGG TTG TAG TAG CCC-3’, respectively.

After denaturation at 95°C for 300 s, DNA samples were subjected to 40

cycles of incubation at 95°C for 0.1 s, 58°C for 6 s, and 72°C for 18 s. The

number of PCR cycles necessary to produce 20 ng of DNA product was

defined as the threshold cycle number (Ct), and the mtDNA copy number

was calculated using the following equation: relative copy number = 2∆Ct

(∆Ct = Ctß-globin – CtND1).

Lumbar and femoral neck BMD. BMD of the lumbar spine (L1 to L4) and

right femoral neck were measured by dual-energy x-ray absorptiometry

(DEXA) using DEXXUM-T (Osteosys, Ltd., Seoul, Korea) and was

expressed as grams of mineral per area (g/cm2). DEXA quality assurance pro-

cedures were conducted every third day to ensure scanner reliability accord-

ing to the guidelines of the manufacturer and maintenance checks were car-

ried out by the manufacturer every quarter.

Classification of osteoporosis and osteopenia. T score at the femoral neck and

lumbar spine was calculated by comparing the measured BMD with the mean

peak BMD of a normal adult population of the same age17. Osteoporosis and

osteopenia were defined as a BMD T score ≤ –2.5 or between –1.0 and –2.5,

respectively, in either femoral neck or lumbar spine, according to the World

Health Organization classification18. Lumbar spine T score was determined

from the total spine BMD, calculated as the L1-L4 bone mineral content

divided by the L1-L4 area.

Anthropometric and biochemical evaluation. One trained examiner conduct-

ed all anthropometric measurements. Body weight was measured to the near-

est 0.1 kg with the subjects wearing light clothing and no shoes using an elec-

tronic scale. Height was measured to the nearest 0.1 cm using a stadiometer.

Waist circumference was measured on standing subjects midway between the

lowest rib and the iliac crest, and hip circumference was measured at the max-

imal protrusion of the greater trochanter. Body mass index (BMI) and

waist-hip ratio (WHR) were calculated. Blood pressure was measured in the

sitting position after a 10-min rest period.

Biochemical tests were performed on blood samples collected after

overnight fasting (> 12 h). Serum levels of fasting glucose, total cholesterol,

high-density lipoprotein cholesterol (HDL-C), triglyceride, and high-sensitiv-

ity C-reactive protein (hs-CRP) were measured using an Advia 1650

Chemistry system (Siemens, Tarrytown, NY, USA). Low-density lipoprotein

cholesterol (LDL-C) was calculated using Friedewald’s formula [LDL-C =

total cholesterol – HDL-C – (triglyceride/5)] if serum triglyceride level was <

400 mg/dl. Fasting insulin levels were measured by electrochemilumines-

cence immunoassay (Roche, Indianapolis, IN, USA) and insulin resistance

was estimated using the homeostasis model assessment of insulin resistance

(HOMA-IR) index [(insulin (µlU/ml) × fasting blood glucose

(mg/dl)/18)/22.5]. Serum osteocalcin and 25-OH vitamin D were measured

using an electrochemiluminescence immunoassay (Roche). Plasma

adiponectin levels were measured using an enzyme immunoassay kit

(AdipoGen, Seoul, Korea) with inter- and intraassay variability of 4.63% ±

0.82% and 2.72% ± 0.52%, respectively.

Statistical analysis. Data are presented as mean ± SD or number (%).

Variables such as triglycerides, adiponectin, and mtDNA copy number were

log-transformed to approximate a normal distribution. Subjects were classi-

fied into normal, osteopenia, and osteoporosis groups according to BMD T

score. Clinical characteristics were compared among the 3 groups with

ANOVA for continuous variables and chi-square test or Fisher’s exact test for

categorical variables. Pearson’s correlation coefficients were calculated to

evaluate the relationships between lumbar or femoral neck BMD and clinical

variables. Significance was defined at the 0.05 level. To confirm an inde-

pendent association between mtDNA copy number in peripheral blood and

BMD, a stepwise multiple linear regression analysis was performed to

exclude the influence of potential confounding variables such as age, BMI,

WHR, 25-OH vitamin D, osteocalcin, adiponectin, homocysteine, and

hs-CRP. We defined potential confounding variables as those that showed

associations with mtDNA copy number by Pearson’s correlation analysis in

this study or those shown to have relationships with mitochondrial function in

past studies. Significance for entry into the model used the 0.15 level auto-

matically determined in stepwise regression. All calculations were performed

using the SAS 9.1 package (SAS Institute, Cary, NC, USA).

RESULTS

The mean age of the subjects was 57.40 ± 6.07 years, and the

mean femoral neck and lumbar BMD were 0.918 ± 0.098 and

0.958 ± 0.174 g/cm2, respectively. Among the 146 post-

menopausal women, 54 (36.99%) and 36 (24.66%) were

included in the osteopenia and osteoporosis groups, respec-

tively. Table 1 shows the clinical characteristics among the 3

groups. There were significant differences among the groups

in femoral neck BMD (p < 0.0001), 25-OH vitamin D (p =

0.001), and osteocalcin (p = 0.001), as well as mtDNA copy

number (p < 0.0001). The numbers of current smokers

(0.68%), alcohol drinkers (3.42%), and patients using antidia-
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betes (1.37%) or antihypertensive agents (10.27%) were

extremely low in all subjects and not significantly different

among the 3 groups.

Table 2 shows the associations between femoral neck

BMD or lumbar BMD and measured variables. Femoral neck

BMD was negatively correlated with age (r = –0.01, p = 0.04)

and with serum levels of adiponectin (r = –0.22, p = 0.01) and

osteocalcin (r = –0.31, p = 0.0001), and positively correlated

with serum levels of 25-OH vitamin D (r = 0.32, p < 0.0001).

The relationship between mtDNA copy number and femoral

neck BMD (r = 0.36, p < 0.0001) and lumbar BMD (r = –0.07,

p = 0.42) is shown in Figure 1.

Table 3 shows the independent associations between

femoral neck BMD and mtDNA copy number. The multivari-

ate model explained 13% of the variance of femoral neck

BMD by mtDNA copy number (ß = 0.156, p < 0.001), 8% by

serum adiponectin (ß = –0.047, p < 0.001), 4% by osteocalcin

(ß = –0.004, p = 0.01), and 2% by the level of HDL-C (ß =

0.001, p = 0.07) in stepwise multiple regression analysis that

included age, BMI, waist circumference, WHR, systolic and

diastolic blood pressure, HOMA-IR, hs-CRP, homocysteine,

total cholesterol, LDL-C, triglyceride, 25-OH vitamin D, and

regular exercise. However, mtDNA copy number was not

related to lumbar BMD. Instead, WHR (ß = 0.491, p = 0.07)

and osteocalcin (ß = –0.006, p = 0.10) were independent vari-

ables associated with lumbar BMD. 

DISCUSSION

In this cross-sectional study of postmenopausal women, we

demonstrated a significant positive relationship between

mtDNA copy number in peripheral blood and femoral neck

BMD that was independent of age, obesity, inflammatory

markers, bone metabolism-related indices, and exercise.

It has been reported that femoral neck BMD or its changes

are related to diverse metabolic indicators such as BMI19,

muscle mass20, lipid profile21, insulin resistance22, metabolic

syndrome23, and circulating adiponectin24, estrogen25, or

osteocalcin25,26. Further, a relationship between low bone

mass and cardiometabolic disorders has consistently been pro-

posed. Initially, this was merely regarded as concurrence relat-

ed to senescence. However, independent of age and tradition-

al risk factors, low BMD was consistently found to be associ-

ated with cardiovascular or metabolic disease in a large num-

ber of studies27,28,29. Despite a relatively clear epidemiologi-
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Table 1. Clinical characteristics of study subjects.

Characteristics Normal†, Osteopenia†, Osteoporosis†, p††

N = 56 N = 54 N = 36

Age, yrs 56.63 ± 6.25 57.48 ± 5.55 58.67 ± 6.40 0.29

Body mass index, kg/m2 24.87 ± 2.66 24.16 ± 2.19 24.15 ± 2.15 0.35

Waist circumference, cm 82.34 ± 6.38 81.93 ± 6.75 82.97 ± 7.89 0.78

Waist-hip ratio 0.85 ± 0.05 0.85 ± 0.05 0.86 ± 0.05 0.35

Blood pressure, mm Hg

Systolic 123.70 ± 16.04 121.24 ± 12.13 125.11 ± 13.28 0.41

Diastolic 72.57 ± 10.10 71.81 ± 8.00 72.92 ± 8.80 0.83

Glucose tolerance index

Fasting glucose, mg/dl 89.93 ± 21.73 88.83 ± 14.41 86.27 ± 19.94 0.66

Fasting insulin, µIU/ml 5.80 ± 4.94 5.93 ± 2.97 6.51 ± 6.47 0.77

HOMA-IR 1.45 ± 2.12 1.32 ± 0.76 1.46 ± 1.71 0.90

Lipid profile

Total cholesterol, mg/dl 203.86 ± 32.52 206.51 ± 31.31 213.63 ± 39.32 0.40

Triglyceride*, mg/dl 108.48 ± 51.58 122.94 ± 83.41 159.67 ± 40.22 0.04

HDL-cholesterol, mg/dl 56.77 ± 12.26 55.02 ± 11.80 54.98 ± 10.94 0.72

LDL-cholesterol, mg/dl 125.39 ± 30.63 124.73 ± 31.51 126.64 ± 31.56 0.93

Inflammatory index

hsCRP, mg/ml 0.15 ± 0.25 0.18 ± 0.37 0.22 ± 0.62 0.64

Adiponectin*, µg/ml 6.68 ± 5.30 5.74 ± 2.95 7.23 ± 4.05 0.24

Homocysteine*, µmol/l 12.82 ± 14.29 11.45 ± 2.72 11.44 ± 4.93 0.99

Bone metabolism index

Femoral neck BMD, mg/cm2 0.997 ± 0.062 0.912 ± 0.059 0.804 ± 0.071 < 0.0001

Lumbar BMD, mg/cm2 0.962 ± 0.155 0.953 ± 0.171 0.961 ± 0.207 0.91

25-OH vitamin D, ng/ml 19.46 ± 9.76 12.91 ± 4.54 14.64 ± 9.10 0.001

Osteocalcin, ng/ml 10.85 ± 3.50 12.60 ± 4.00 14.04 ± 4.93 0.001

Mitochondrial DNA copy number* 1.24 ± 0.20 1.11 ± 0.18 1.09 ± 0.24 < 0.0001

Regular exercise** 20 (35.71) 20 (37.04) 11 (30.56) 0.43

Data are mean ± standard deviation or number (%). * Log-transformation to improve distribution. ** Physical

exercise performed at least 30 min more than twice a week, more than 6 months. † Normal: T score ≥ –1.0;

osteopenia: –2.5 < T score < –1.0; osteoporosis: T score ≤ –2.5. †† ANOVA or chi-square test. HOMA-IR:

homeo stasis model assessment of insulin resistance; hsCRP: high-sensitivity C-reactive protein.
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cal connection between these factors, the underlying common

pathophysiology has not been fully elucidated.

Recently, a large number of studies have shown that low

mtDNA copy number in peripheral blood is correlated with

mitochondrial-related metabolic disorders or conditions such

as insulin resistance30,31, glucose dysregulation32, nonalco-

holic fatty liver disease33, elevated homocysteine levels34,

hyperlipidemia35, and cancers36,37,38. Therefore, the mtDNA

content of peripheral blood can be used as a surrogate marker

of numerous metabolic diseases that are related to mitochon-

drial dysfunction. Production of ROS and inflammatory

cytokines in the PBMC can be elevated in numerous condi-

tions related to oxidative stress, including obesity39, diabetic

nephropathy40, Parkinson’s disease41, and vitiligo42. Mito -

chondria are a major source of ROS, and ROS-mediated

oxidative damage of the mitochondria themselves elevates

ROS production. Oxidative injury induces a decrease in

mtDNA content in various tissues and oxidative stress levels

in folate-deficient liver are inversely correlated with liver

mtDNA content43. Excessive ROS production induced low

mtDNA copy number in arsenic trioxide-treated oocytes44 and

in the muscle of hyperglycemic streptozotocin-treated mice45.

In addition, oxidative stress can lead to osteoporosis4,5. It has

been reported that ROS considerably influence the generation

and survival of osteoclasts, osteoblasts, and osteo -

cytes through various mechanisms involving FoxOs,

Wnt/ß-catenin, and peroxisome proliferator-activated recep-

tor-γ46. Therefore, oxidative stress may play an important role

in the relationship between low leukocyte mtDNA content and

low bone mass.

However, recent studies demonstrated the redundancy of

mtDNA through the stimulation of mitochondrial biogenesis

as a compensating mechanism against increased mitochondri-

al damage induced by oxidative stress47. Further, under the

same metabolic compromise, tissue-specific differences in

mtDNA copy number were also reported48. In the latter study,

muscle mtDNA copy number in nondiabetic individuals was

higher than that in diabetics, whereas leukocyte mtDNA copy

number was lower in nondiabetics than in diabetes. These

results were explained as being related to characteristics of the
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Table 2. Correlation between bone mineral density and other variables.

Variables Femoral Neck BMD Lumbar BMD

r p r p

Age –0.01 0.04 –0.11 0.18

Body mass index 0.04 0.67 0.09 0.30

Waist circumference –0.03 0.70 0.09 0.29

Waist-hip ratio 0.01 0.90 0.14 0.10

Systolic blood pressure –0.02 0.78 –0.003 0.97

Diastolic blood pressure –0.04 0.63 0.06 0.50

Fasting glucose 0.14 0.10 0.14 0.08

Fasting insulin 0.01 0.92 –0.03 0.72

HOMA-IR 0.06 0.44 0.01 0.90

Total cholesterol 0.06 0.49 0.03 0.72

Triglyceride* –0.08 0.36 0.01 0.95

HDL-cholesterol 0.09 0.26 0.07 0.43

LDL-cholesterol 0.07 0.37 0.01 0.95

hsCRP –0.09 0.26 –0.01 0.86

Adiponectin* –0.22 0.01 –0.05 0.52

Homocysteine* 0.06 0.46 –0.14 0.10

25-OH vitamin D 0.32 < 0.0001 –0.07 0.41

Osteocalcin –0.31 0.0001 –0.14 0.10

Coefficients (r) and p values calculated by Pearson correlation method. 

* Log-transformation to improve distribution. HOMA-IR: homeostasis

model assessment of insulin resistance; hsCRP: high-sensitivity C-reactive

protein.

Figure 1. Correlations between log-transformed mitochondrial DNA copy number and femoral neck BMD (A) or lumbar BMD (B).

mtDNA: mitochondrial DNA; BMD: bone mineral density.
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cells such as in mitotic (leukocytes) or postmitotic (muscle)

cells. However, in endothelial cells, which are mitotic cells,

exogenous and endogenous ROS in mitochondria increased

mtDNA damage and decreased mitochondrial RNA transcrip-

tion levels and mitochondrial protein production49. In addi-

tion, although mtDNA copy number in neurons50, muscle

cells51, and leukocytes52 showed a positive correlation with

age until middle age, thereafter copy number was negatively

correlated with age, as oxidative stress is generally elevated

with aging. Further, in hemodialysis patients, increased

mtDNA copy number in PBMC was associated with a signif-

icant decrease in all-cause mortality52. In our study, there was

no significant relationship between leukocyte mtDNA copy

number and age (r = –0.21, p = 0.17). Thus, further research

is needed to clarify the relationship between oxidative stress

and mtDNA biogenesis.

BMD was also highly heritable at different sites in a twin

and family study in Koreans53. It was recently suggested that

CNV of UGT2B17 may be related with osteoporosis and hip

osteoporotic fracture as a genetic factor8. CNV indicates a

DNA segment of 1 kb or larger that is present in different copy

numbers compared to a reference genome, and has been

shown to contribute about 18% of the variation in gene

expression8. It has been reported that CNV reflecting a struc-

tural genomic variation are associated with several complex

human disorders and conditions8. Also, the mtDNA copy

number of peripheral blood showed high heritability (65%)54.

Therefore, the possibility cannot be excluded that quantitative

mtDNA variation is genetically involved in mtDNA gene

expression, mitochondrial function, and multifactorial human

diseases. In particular, the mitochondrial ND1 gene used for

primers for genotype mtDNA copy number in our study was

also used in the previous study54 that examined the associa-

tion between mitochondrial DNA content and heritability.

Mitochondrial DNA can be easily damaged by ROS because

of the absence of protective histone, reduction of the antiox-

idative system, and physical proximity to the ROS origin55.

Mitochondrial DNA copy number can represent both the

microenvironmental and genetic factors. Emerging evidence

has suggested that development of osteoporosis can be related

with mtDNA13,14,56. A specific deletion or common variants

of mtDNA are associated with severe male osteoporosis13 or

development of osteoporosis14 in PBMC. Further, BMD, bone

mineral content (BMC), and BMC/length in the femur were

all decreased in mutator mice of the catalytic subunit of

mtDNA polymerase, needed in mtDNA synthesis, at the age

of 40 weeks with an increased mtDNA mutation56. Although

it has been reported that these genetic background factors of

mtDNA influence the osteoporosis, a focused molecular

mechanism between them has not yet been investigated.

Unexpectedly, mtDNA copy number was not connected

with lumbar BMD. We cannot exactly understand the reason

for and clinical significance of this finding. However, genetic

influences may be lower in lumbar than in femoral neck BMD

among females. Whereas Korean males showed the highest

heritability (0.76) in lumbar BMD, the heritability of lumbar

BMD (0.66) was relatively low compared to pelvic BMD

(0.78) in females53. In both sexes, lumbar BMD explained only

17% of total variance of BMD in the genetic study53. This

value was the lowest among variances of other sites examined.

And presence of lumbar osteoarthritis can lead to overestima-

tion of BMD measured57. Further, it has been reported that

there may be differences not only in risk factors but also in

potential pathophysiologic factors between low femoral neck

and lumbar BMD24,57. Further investigation is needed of the

underlying mechanisms of the differential findings between

mtDNA copy number and femoral neck/lumbar BMD.

Postmenopausal status is related to an increased risk of

fracture, and most fractures occur in postmenopausal

women58. Estrogen deficiency is believed to play a role in var-
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Table 3. Stepwise multiple linear regression analysis to identify independent clinical variables associated with

bone mineral density.

Variables ß Standard F Value p

Error

Femoral neck BMD

Mitochondrial DNA copy number* 0.156 0.035 21.21 < 0.001

Adiponectin* –0.047 0.013 13.48 < 0.001

Osteocalcin –0.004 0.002 6.88 0.01

HDL-cholesterol 0.001 < 0.0001 3.38 0.07

Lumbar BMD

Waist-hip ratio 0.491 0.27 3.28 0.07

Osteocalcin –0.006 0.003 2.72 0.10

All variables left in the model are significant at the 0.15 level; no other variable met the 0.15 level for entry into

the model. R2 for femoral neck BMD and lumbar were 0.26 and 0.04, respectively. Mitochondrial DNA copy

number was independent variable and regression coefficients (ß) were adjusted for age, BMI, waist circumfer-

ence, systolic and diastolic blood presure, HOMA-IR, hsCRP, homocysteine, total cholesterol, LDL-cholesterol,

triglyceride, 25-OH vitamin D, and regular exercise. BMI: body mass index; BMD: bone mineral density; HDL:

high-density lipoprotein; HOMA-IR: homeostasis model assessment of insulin resistance; hsCRP: high-sensi-

tivity C-reactive protein; LDL: low-density lipoprotein. * Log-transformation to improve distribution.
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ious metabolic and endocrinological conditions in post-

menopausal women compared with premenopausal women.

Indeed, estrogen is known to exert direct and/or indirect

effects on mitochondrial function, including stabilization of

the mitochondrial membrane, increased mitochondrial and

nuclear transcription, and activation of intracellular signaling

proteins59. Increasing prevalence and risk of fracture could be

attributed to decreased mitochondrial function and/or biogen-

esis due to estrogen deficiency in postmenopausal women

compared with premenopausal women, although this remains

to be confirmed.

We evaluated diverse variables that might reveal mecha-

nisms underlying the connection between bone and car-

diometabolic disorders, including serum levels of osteocalcin,

homocysteine, and adiponectin. mtDNA copy number in

peripheral blood was independently and positively correlated

with femoral neck BMD. Thus, mitochondrial biogenesis may

act on common mechanisms underlying the pathophysiology

of osteoporosis and cardiometabolic disorders. Unlike other

adipocytokines, adiponectin favorably influences energy

homeostasis and the chronic inflammatory reaction60.

Adiponectin also acts positively on bone cells, including stim-

ulation of osteoblast proliferation and inhibition of osteoclas-

togenesis61. However, cross-sectional studies and some large

prospective studies have consistently shown that circulating

adiponectin levels were inversely associated with BMD24,

consistent with our results. Further, a recent large cohort study

reported that serum adiponectin level is associated with

increased hip BMD loss in elderly women24. Recent results

suggest that the maintenance of mitochondrial function is

associated with adiponectin62. However, mitochondrial bio-

genesis was not related to serum adiponectin in the liver of

adiponectin knockout mice63. In our study, we found that plas-

ma adiponectin levels were significantly and inversely corre-

lated with femoral neck BMD and were not associated with

mtDNA content in peripheral blood (r = 0.14, p = 0.08).

Our study has some limitations. We did not examine mito-

chondrial biogenesis in skeletal muscle, which is generally

accepted as the “gold standard” for evaluation of mitochon -

drial function. However, it has been suggested that the

mtDNA content of peripheral blood may reflect that of mus-

cle and liver tissue in rats64. Moreover, measurement of

mtDNA content is most reliable in the target tissue, as mtDNA

content differs between organs. The number of mitochondria,

from single to several thousand, in a cell varies widely by

organism and tissue type54. Each mitochondrion is estimated

to contain 2–10 mtDNA copies54. It has been reported that

mtDNA copy numbers per PBMC, myocyte, neuron, and

hepatocyte are 223~854, 1075~2794, 1200~10,800, and up to

25,000, respectively54. To elucidate the relationship between

mitochondrial dysfunction and osteoporosis, further studies in

bone marrow, osteoblasts, osteoclasts, and osteocytes are

needed. Next, we did not examine circulating estradiol levels

in the subjects. However, because we enrolled women who

had been postmenopausal for at least 1 year, serum estradiol

levels may not have been that different among subjects. It is

also known that there is only a weak association between

serum estradiol level and rate of bone turnover in post-

menopausal women17. In addition, we did not measure the

levels of oxidative stress and therefore could not directly

investigate the role of oxidative stress as a mediator between

mtDNA copy number in peripheral blood and low BMD. As

well, it is difficult to identify causation and mechanisms

underlying the relationships between mitochondrial biogene-

sis and low femoral neck BMD with a cross-sectional study

design. Finally, the study was not community-based and suf-

fers from potential selection bias.

Our study showed that low mtDNA content in peripheral

blood is related to decreased femoral neck BMD in post-

menopausal women. Our findings suggest that mitochondrial

dysfunction is a potential pathophysiologic mechanism of

osteoporosis in postmenopausal women.
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