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Review

Apoptosis as a Mechanism of Action of Tumor Necrosis
Factor Antagonists in Rheumatoid Arthritis
DIMITRIOS MAKRYGIANNAKIS and ANCA IRINEL CATRINA

ABSTRACT. Tumor necrosis factor (TNF) antagonists are drugs developed to block endogenous TNF, an essen-

tial proinflammatory molecule with a central role in the pathogenesis of rheumatoid arthritis (RA).

Although extensive studies have been performed concerning the mode of action of TNF-blocking

agents, there are still many unresolved questions and potential differences between different

TNF-blocking drugs. One unresolved issue is to what extent apoptosis is affected by TNF blockade

in RA. We provide an overview of studies that have investigated the proapoptotic effect of different

anti-TNF drugs in RA, searching for a unified interpretation of somewhat contradictory data. 
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Tumor necrosis factor (TNF) was discovered as a potential

key modulator in rheumatoid arthritis (RA) more than a

decade ago1. Subsequent studies confirmed that TNF is

present in both synovial tissue2 and synovial fluid as well as

serum3 of patients with RA, and identified synovial

macrophages as the principal source of TNF4. Animal stud-

ies offered a deeper understanding of the implications of

TNF in the pathogenesis of RA. TNF transgenic mice devel-

op spontaneous RA-like disease with synovial inflammation

and joint destruction5. Moreover, administration of TNF

aggravates disease progression in mouse strains susceptible

to arthritis6. But perhaps the most convincing evidence

regarding the key role of TNF in RA pathogenesis is the

high clinical efficacy of different TNF-blocking therapies in

patients with RA7,8. Several TNF antagonists are currently

available for clinical use: etanercept (a recombinant TNF

receptor-Fc fusion protein), infliximab (a chimeric mono-

clonal antibody), adalimumab (a fully human anti-TNF anti-

body)7, certolizumab pegol (a pegylated humanized Fab

fragment)9, and golimumab (a human anti-TNF anti-

body)10,11. All these drugs were originally designed to block

TNF, but differences in their mechanisms of action might

result from their ability to bind different types of TNF mol-

ecules and from their different structures. Infliximab and

adalimumab bind with high affinity to both soluble and

membrane TNF, and are able in vitro to induce both anti-

body-dependent cell-mediated cytotoxicity (ADCC)12,13

and complement-dependent cytotoxicity (CDC). Etanercept

binds primarily soluble TNF and to a lesser extent cell-sur-

face TNF14. It has been suggested that etanercept does not

mediate either ADCC or CDC15,16 despite presence of an Fc

portion in the molecule. However, another report demon-

strated that etanercept can induce both ADCC and CDC in a

stably transfected cell line expressing TNF-α17. Golimumab

is an IgG1 antibody therefore able to induce both ADCC and

CDC18, while certolizumab is the only pegylated Fab anti-

TNF lacking the Fc portion and therefore is unable to medi-

ate either of these effects17. Direct comparison of TNF bind-

ing affinities demonstrated that infliximab, adalimumab,

etanercept, and certolizumab pegol bind to transmembrane

TNF-α on transmembrane TNF-α-transfected cells17,19,20

with similar affinities that were weaker than for soluble

TNF-α21. The bioactivity of the IgG1 molecules golimum-

ab, infliximab, and adalimumab in neutralizing soluble

human TNF is inferior to that of certolizumab and etaner-

cept. Certolizumab pegol is the most potent at inhibiting

lipopolysaccharide (LPS)-driven production of interleukin

1ß (IL-1ß) by monocytes, followed by golimumab, adali-

mumab, and infliximab, while etanercept has only a partial

effect22. Infliximab and adalimumab have similar efficacy

profiles and except for RA are used in more inflammatory

diseases such as psoriatic arthritis (PsA), psoriasis, ankylos-

ing spondylitis (AS), and Crohn’s disease. Etanercept lacks
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efficacy in granulomatous diseases such as Crohn’s and

granulomatosis with polyangiitis (Wegener’s) and may be

less efficacious in psoriasis8. Golimumab is approved for

treatment of RA, PsA, and AS23. Certolizumab pegol is

approved for treatment of RA and Crohn’s disease24.

RA and Apoptosis

Defective apoptosis of resident cells contributes to exces-

sive synovial cell infiltration and perpetuation of chronic

inflammation in RA25. Histological studies26,27 demonstrat-

ed low levels of apoptosis in the RA synovial tissue,

between 1% and 3% of synovial cells, despite the presence

of both cell death receptors (Fas and TNFR) and cell death

ligands (Fas-ligand and TNF)2,28,29 at the site of the

inflamed synovium. It was originally suggested that con-

comitant occurrence of soluble forms of the receptors and/or

their ligands might act as endogenous inhibitors30,31, while

another study claimed deficient expression of functional FasL

on synovial lymphocytes32. It is thought today that resistance

to cell death receptor-mediated apoptosis in the inflamed syn-

ovium is largely due to high expression of inhibitory mole-

cules such as Fas-associated death do main-like IL-1ß-con-

verting enzyme inhibitory protein (FLIP)33,34, nuclear factor-

κB (NF-κB) transcription factor35,36, and sentrin37. Con -

comitant inhibition of the mitochondrial pathway due to syn-

ovial expression of the antiapoptotic but not proapoptotic

Bcl-2 family members38,39, as well as presence of dominant

negative p53 mutants40 despite high p53 synovial expres-

sion41, contribute further to the apoptosis-resistant phenotype

of the RA synovium. Recently, synovial expression of

inhibitors of apoptosis proteins, blocking both cell

death-mediated and mitochondrial pathways at the common

level of caspase 3, has been reported in RA and was correlat-

ed with the levels of synovial apoptosis42.

RA and TNF-mediated Apoptosis

TNF is a key agent of innate immunity and an important

modulator of inflammation. It belongs to the TNF super-

family and consists of a 26-kDa protein expressed on the

cell surface or present in a soluble form following cleavage

by a protease called TNF-α-converting enzyme43. Both

membrane-bound and soluble forms are biologically active.

The effects of TNF are mediated by 2 structurally distinct

receptors: type I (TNF-RI: p60 or p55) and type II

(TNF-RII: p80 or p75). Under different conditions, such as

inflammation, these receptors are shed from cell surfaces

and released into the circulation. Both TNF-RI and TNF-RII

have high affinity for TNF but the rate of dissociation is

higher for TNF-RII44. TNF ligation induces trimerization of

cell-surface receptors, followed by intracellular signaling.

There are 2 main intracellular pathways activated by TNF,

resulting in activation of either the transcription factor

NF-κB following expression of survival genes, or activation

of caspases following apoptosis45. These 2 pathways are

closely linked as far as inhibition of constitutive NF-κB

activation, in the absence of an additional cell death-induc-

ing signal, may by itself result in cell apoptosis46. Although

both receptors can transduce the signaling pathways for

apoptosis and NF-κB activation, TNF-RI is responsible for

these signals in most cases47.

Apoptosis can be modulated not only by surface TNF

receptors but also through reverse signaling upon ligation of

transmembrane TNF by its counter-receptor/antibodies48,49.

One potential intracellular pathway activated through this

mechanism is dependent on p5348 and further induction of

proapoptotic Bcl-2 family members48,50. Recently, it has

been shown that reverse signaling also leads to NF-κB sup-

pression and apoptosis induction apparently through a cas-

pase-independent mechanism51. However, NF-κB blocking

in RA synovial fluid cells downmodulates FLIP-like

genes52, suggesting that reverse signaling might promote

even a caspase-dependent apoptosis. Other effects mediated

through reverse signaling inhibition of LPS-driven cytokine

production by monocytes53 and induction of neutrophil

necrosis54.

TNF Antagonists and Synovial Apoptosis

TNF antagonists decrease the macroscopic inflammatory

joint score as well as microscopic inflammation, in terms of

reduction of the number of synovial inflammatory cells.

High-dose infliximab decreases both synovial lymphocyte

and macrophage numbers55,56, while doses of 3 mg/kg

appear to decrease only macrophage numbers57,58. Etaner -

cept decreases synovial macrophages but not lymphocyte

numbers58. Adalimumab decreases macroscopic inflamma-

tion in the rheumatoid joint without significant changes in

synovial cellularity according to classical histological

score59, although studies regarding specific inflammatory

cell subsets are not available. We currently lack histological

studies on the effect of the other 2 TNF antagonists (cer-

tolizumab and golimumab) that were introduced into daily

clinic use relatively recently. The observed reduction in the

number of immune cells at the site of inflammation follow-

ing use of TNF antagonists might be due to decreased local

cell recruitment and/or to increased clearance of resident

cells, through induction of cell death or increase of cellular

efflux. Several studies have demonstrated that infliximab,

adalimumab, and etanercept are all able to decrease leuko-

cyte trafficking to the joint. Infliximab, for example, reduces

granulocyte recruitment and might interfere with monocyte

trafficking through downregulation of synovial monocyte

chemotactic protein-1 and expression of cell adhesion mol-

ecules55,56. Both infliximab and etanercept increase periph-

eral CXCR3-positive T cells, an indirect proof for decrease

of recruitment of T cells to the site of inflammation60.

Adalimumab decreases the influx of leukocytes into the

joint without impairing neutrophil chemotaxis ex vivo61.

Decreased recruitment of peripheral blood cells to the
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inflammation site should theoretically result in an increase

in peripheral blood cell counts. However, 1 week of inflix-

imab treatment induces a decrease in monocyte and lym-

phocyte counts62,63, while 2 weeks of etanercept treatment

does not significantly alter peripheral blood counts64, sug-

gesting that other mechanisms than decreased cellular traf-

ficking should contribute to the observed decrease in cellu-

larity. One possibility is an increase in the cellular efflux,

but this hypothesis is still highly speculative, with only 1

study suggesting an increase in lymph vessel formation fol-

lowing treatment with infliximab65. The second possibility

is increased apoptosis. One study exploring induction of

apoptosis by infliximab in patients with RA failed to demon-

strate any changes in synovial apoptosis as late as 28 days

after the first infusion57. A followup study also failed to

identify any increase in synovial apoptosis as early as 1 hour

after the first infusion66. However, 8 weeks of treatment

with both infliximab and etanercept resulted in an increased

number of synovial tissue apoptotic cells58. One possible

explanation for the reported differences might be the timing

of the followup. Even though induction of apoptosis is a

rapid event, altering the status of an antiapoptotic environ-

ment such as the rheumatoid synovium might require com-

plex changes. Effects of such complex changes might thus

become evident as a change in apoptotic cells only at later

timepoints, including the 8 weeks of treatment (with 2

weeks after the last infliximab infusion), as in our study58.

This hypothesis is strengthened by a study in Crohn’s dis-

ease, demonstrating an increased level of apoptosis follow-

ing 10 weeks of infliximab therapy compared to baseline67.

The low numbers of patients in the above-noted studies (n =

1257, n = 566, and n = 2158) limit the possibility of a definite

conclusion and require further investigation in larger

cohorts.

TNF Antagonists and Apoptosis Outside the Synovial

Membrane

In vitro studies have been more successful in finding some

consensus on the apoptosis-inducing capacity of TNF anta -

gonists. We were the first to report that both infliximab and

etanercept induced in vitro apoptosis of monocytes, but not

lymphocytes, derived from RA synovial fluid and to a less-

er extent apoptosis of monocytes derived from RA peripher-

al blood following 24-hour incubation58. This observation

was subsequently partly confirmed for infliximab, which

induced apoptosis of monocytes derived from peripheral

blood of subjects with RA but not healthy individuals fol-

lowing 48-hour incubation51. In a more recent report, both

infliximab and adalimumab and to a lesser extent etanercept

had the ability to induce apoptosis of activated peripheral

blood lymphocytes and monocytes, while certolizumab

pegol exhibited no such effects17. As well, infliximab and

adalimumab, but not etanercept, induced apoptosis of a

human monocytic cell line in vitro and in vivo after transfer

in a chimeric human-mouse model68. Crosslinking of the

etanercept bound to membrane TNF with the help of

anti-human anti-IgG resulted in increased apoptosis and

suggested a role for multimer formation in TNF antagonist-

mediated apotosis48. However, in a recent report etanercept

and to a lesser extent infliximab and adalimumab were able

to induce apoptosis in synovial membrane-derived fibro -

blast cells in the presence of autologous peripheral blood

mononuclear cells69. Taken together, the in vitro data sup-

port a direct effect of TNF antagonists on apoptosis rather

than an indirect in vivo effect as a consequence of changes

in the inflammatory synovial milieu. While in vitro testing

demonstrated that TNF antagonists can induce apoptosis

outside the synovial membrane, with some differences

potentially related to the agent used, the cell type, and the

cell activation state, in vivo studies have been less success-

ful, with contradictory results. One study that investigated

the level of apoptosis induced by infliximab in peripheral

blood of RA patients 1 and 24 hours after drug administra-

tion and immediately after blood sampling failed to demon-

strate any changes66. Another study suggested that TNF

antagonists increase the level of peripheral blood nucleo-

somes, an indirect measure of apoptosis, but inclusion of

patients with other diagnoses than RA limited interpretation

of the study70. One potential limitation of the in vivo

approach is the large array of confounding factors that might

influence apoptosis levels in the peripheral blood, thus pre-

venting detection of a real difference.

Interestingly, apoptosis outside the synovial membrane

has also been suggested to play an important role in deter-

mining the side effect profile of distinct TNF antagonists. It

is proposed, for example, that antibodies against TNF are

able to induce apoptosis of T cells and to mediate CDC and

ADCC, allowing expansion of immunosuppressive regula-

tory T cells with a potential reduction of interferon-γ

responses that might lead to increased susceptibility to

tuberculosis reactivation as compared to soluble receptors

(for a review, see Harris and Keane71).

TNF Antagonists and Apoptosis — a Drug-specific

Effect?

With the background of different effects observed with dif-

ferent conditions and with different TNF antagonists it has

been suggested that induction of apoptosis might be a

drug-specific rather than a class-specific mechanism of

action. This hypothesis originated in the original investiga-

tion on apoptosis induction in Crohn’s disease, where inflix-

imab induced apoptosis of activated lamina propria T lym-

phocytes72, activated peripheral blood lymphocytes73, and

peripheral blood monocytes74, while no such effects were

observed for etanercept75,76. However, an alternative expla-

nation for the lack of effect of etanercept on Crohn’s-derived

mononuclear cells is a cell-specific effect, where etanercept

that binds transmembrane TNF with a lower affinity than
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infliximab and adalimumab19 might only be able to induce

apoptosis in cells with high transmembrane TNF (tmTNF)

expression, such as synovial macrophages, but not in cells

with lower levels of tmTNF such as intestinal macrophages

or monocytic cell lines77. In accord with previously present-

ed data, etanercept and infliximab do not have an effect on

lymphocyte apoptosis in RA58, while in Crohn’s disease

infliximab but not etanercept increases apoptosis of activat-

ed lymphocytes72,75. A recent report further demonstrated

that infliximab, adalimumab, and certolizumab, but not

etanercept, induce apoptosis in CD4-positive intestinal lym-

phocytes when cocultured with CD14-positive peripheral

autologous cells from patients with inflammatory bowel dis-

eases78. The same reasoning might explain different effects

of the same drug (in this case infliximab) when tested on dif-

ferent types of cells, with induction of apoptosis in Crohn’s

but not RA lymphocytes. Intestinal lymphocytes in Crohn’s

are highly activated and able to produce high levels of

cytokines79. We and others2,80,81 have demonstrated that

lymphocytes derived from both synovial tissue and synovial

fluid express low levels of cytokines and show signs of

anergy. Repeated in vitro treatment with TNF, a setting that

mimics the chronic exposure to TNF in the RA synovial

environment, suppresses T cell activity82. In support of the

cell-specific hypothesis is the finding that TNF antagonists

exhibit opposite effects in distinct cells derived from the

same disease, with induction of apoptosis in activated

mononuclear cells and prevention of apoptosis in colonic

epithelial cells83,84,85 of patients with Crohn’s disease. The

pathogenesis of Crohn’s disease consists of high apoptosis

of epithelial cells and infiltration with enhanced survival of

mononuclear cells, and we propose that TNF antagonists

can reverse these 2 aberrant mechanisms. This implies that

TNF antagonists differentially regulate distinct cell types

with different status of activation and different sensitivity to

apoptosis83. The potential effect of TNF antagonists on

apoptosis has also been studied in other inflammatory dis-

eases such as psoriasis and PsA86,87 and spondyloarthro -

pathies88, as well as noninflammatory conditions such as

diabetes-associated skin ulcerations89 and ventila -

tor-induced lung injury90, but these findings are beyond the

interest of this report.

TNF antagonists induce apoptosis in certain cellular sys-

tems and conditions through reverse signaling (Figure 1).
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Figure 1. A representation of the apoptotic process with a focus on potential proapoptotic signals induced by tumor necrosis

factor (TNF) antagonists in rheumatoid arthritis. TNFR: TNF receptor; tmTNF: transmembrane TNF; NF-κB: nuclear fac-

tor-κB; Cyt c: cytocrome c; IAP: inhibitors of apoptosis; AIF: apoptosis-inducing factor; FLIP: Fas-associated death domain-

like interleukin 1ß-converting enzyme inhibitory protein; Smac/DIABLO: second mitochondria-derived activator of cas-

pase/direct IAP-binding protein with low pI. Symbol legend given at the top.
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The effect is dependent on the activation status of the cells

and density of expression of transmembrane TNF and is less

pronounced for soluble receptor as compared to antibodies

due to lower binding affinity. Induction of apoptosis is not

essential for clinical efficacy in RA because all available

TNF antagonists have the same efficacy profile, but this

might explain differences in efficacy observed in distinct

diseases.
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